Вязкость масла по sae и его свойства

Примечания

  1. Внутреннее трение в металлах, полупроводниках, диэлектриках и ферромагнетиках: Сб. статей (рус.) / Под ред. Ф. Н. Тавадзе. — М.: Наука, 1978. — 235 с.
  2. В общем случае это не так.
  3. Хмельницкий Р. А. Физическая и коллоидная химия: Учебних для сельскохозяйственных спец. вузов. — М.: Высшая школа, 1988. — С. 40. — 400 с. — ISBN 5-06-001257-3.
  4. Попов Д. Н. Динамика и регулирование гидро- и превмосистем : Учеб. для машиностроительных вузов. — М. : Машиностроение, 176. — С. 175. — 424 с.
  5. Френкель Я. И. Кинетическая теория жидкостей. — Ленинград, Наука, 1975. — с. 226.
  6. Ojovan M. Viscous flow and the viscosity of melts and glasses. Physics and Chemistry of Glasses, 53 (4) 143—150 (2012).

2. Общая характеристика

Согласно закону Ньютона для внутреннего трения вязкость характеризуется коэффициентом пропорциональности между напряжением смещения и градиентом скорости движения слоев в перпендикулярном к деформации сдвига направлении (поверхности слоев):


.

Коэффициент называют коэффициентом динамической вязкости, динамической вязкости или абсолютной вязкостью. Единица измерения коэффициента динамической вязкости — Па c, Пуаз (0,1 Па с).

Количественно коэффициент динамической вязкости равен силе F, которую нужно приложить к единице площади сдвижной поверхности слоя S, чтобы поддержать в этом слое ламинарные течения с постоянной единичной скоростью относительного смещения.

2.1. Типы вязкости

Закон Ньютона для вязкости, приведенный выше, является классической моделью вязкости. Это не основной закон природы, а приближение, что имеет место для некоторых материалов и не подтверждается для других. Неньютоновской жидкости имеют более сложный связь между напряжением сдвига и градиентом скорости, чем простая линейность. Поэтому, для различных видов жидкостей разные модели вязкости:

  • Ньютоновская жидкость : жидкость, такая как вода и большинство газов имеет постоянное значение динамической вязкости.
  • Дилатантна жидкость : жидкость, вязкость которой с ростом градиента скорости возрастает (глиняные суспензии, сладкие смеси, гидрозолей кукурузного крахмала, системы песок / вода).
  • Псевдопластик : жидкость, вязкость которой с ростом градиента скорости уменьшается (краски, эмульсии, некоторые суспензии).
  • Tиксотропна жидкость: жидкость, вязкость которой с течением времени уменьшается (водоносные почвы (плывуны), биологические структуры, различные технические материалы).
  • Реопексна жидкость: жидкость, вязкость которой с течением времени возрастает (гипсовые пасты, суспензии оксида ванадия, Бетониты и отдельные виды принтерного чернил).
  • Бингамивський пластик: модель Бингама подобна модели сухого трения. В статических условиях жидкость ведет себя как твердый материал, а при силовом воздействии начинает течь ..
  • Магнитореологична жидкость это тип «смарт-жидкости», которая, при воздействии магнитного поля значительно увеличивает свою условную вязкость и приобретает свойства вязко-упругой твердого тела.

2.2. Динамическая вязкость некоторых веществ

В основу методов измерения вязкости и их классификации положены математические зависимости, описывающие различные виды течений сред. Измерение вязкости осуществляют вискозиметрами.

Ниже приведены значения коэффициента динамической вязкости ньютоновских жидкостей :

Вязкость отдельных видов газов при давления 100 кПа,
Газ при 0 C (273 K) при 27 C (300 K)
воздуха 17.4 18.6
водород 8.4 9.0
гелий 20.0
аргон 22.9
ксенон 21.2 23.2
углекислый газ 15.0
метан 11.2
этан 9.5
Вязкость жидкостей при 25 C
Жидкость: Вязкость Вязкость
ацетон 3.06 10 -4 0.306
бензол 6.04 10 -4 0.604
кровь (при 37 C) (3-4) 10 -3 3-4
касторовое масло 0.985 985
кукурузный сироп 1.3806 1380.6
этиловый спирт 1.074 10 -3 1.074
этиленгликоль 1.61 10 -2 16.1
глицерин (при 20 C) 1.49 1490
мазут 2.022 2022
ртуть 1.526 10 -3 1.526
метиловый спирт 5.44 10 -4 0.544
моторное масло SAE 10 (при 20 C) 0.065 65
моторное масло SAE 40 (при 20 C) 0.319 319
нитробензол 1.863 10 -3 1.863
жидкий азот (при 77K) 1.58 10 -4 0.158
пропанол 1.945 10 -3 1.945
оливковое масло .081 81
серная кислота 2.42 10 -2 24.2
вода 8.94 10 -4 0.894

Выделяют также коэффициент кинематической вязкости или кинематической вязкостью ν, что является отношением коэффициента динамической вязкости к плотности вещества

.

Единица измерения коэффициента кинематической вязкости — Стокс, м / с. Коэффициент ν в отличие от η выражается величинами, которые не связаны с массой жидкости, т.е. величинами, которые носят, так сказать, кинематический характер, в то время как η носит динамический характер.

Вязкость технических продуктов часто характеризуют условными единицами — градусами Энглера ( Е) и Барбье ( В), секундами Сейболт («S) и Редвуд (» R).

Вязкость зависит от давления, температуры, а также иногда от градиента сдвига ( неньютоновские среды; их вязкость охватывает и так называемую структурную вязкость). Жидкости, вязкость которых не зависит от градиента сдвига, называют идеально вяжущими ( ньютоновскими). Вязкость жидкостей в общем случае с повышением давления незначительно увеличивается, а с повышением температуры уменьшается.

Что такое вязкость смазочного материала в целом

Для определения характеристик любого масла в общем случае используются три общепринятые категории вязкости:

  • кинематическая;
  • динамическая;
  • техническая.

Касаемо автомобилей актуально рассматривать только две категории: кинематическую и динамическую.

Динамическая вязкость – наиболее понятный параметр. Она определяет силу внутреннего трения между слоями смазочного материала. Этот показатель не привязан к внешним условиям и просто указывает на силу трения в масле без точки привязки к какой-либо величине. Измеряется в пуазах (П).


Кинематическая вязкость рассчитывается на основе динамической. Но здесь расчеты проводятся уже с учетом плотности.

То есть кинематическая показывает, как изменяются вязкостные свойства смазочного материала при изменении плотности масла. Эта категория более объективна и применима для описания работы смазки в двигателе внутреннего сгорания.

Чем больше значение этого параметра, тем лучше защитный слой держится на поверхности деталей, менее охотно стекает и требует больше внешних усилий для разрушения образованной пленки.

Это в общем случае, без учета модификаторов. С другой стороны, густые смазки плохо прокачиваются по системе и требуют большей энергии на преодоление силы трения внутри них. То есть влияют на расход топлива.

График зависимости индекса вязкости от базы масла

Ранее считалось, что именно более густые смазочные материалы лучше всего справляются с защитой двигателей от износа. Однако сегодня эта тенденция изменилась. И главную роль стали играть присадки.


То есть даже легкотекучие смазки из полиальфаолефинов отлично справляются с защитой современных двигателей, при этом, не требуя больших усилий на прокачку и смазывание разбрызгиванием. А это существенно сказывается на экономии топлива.

Вязкость электролитов

Электролит — это вещество (кислоты, соли, основания), раствор или расплав которого способен проводить электрический ток за счет распада на ионы

В человеческом организме электролиты имеют важное значение: в крови вместе с ионами железа они переносят кислород, регулируют работу сердца, кишечника, водно-солевой баланс.. На процесс электролиза влияет (наряду с прочими свойствами) вязкость электролита

При этом в промышленности, например в работе аккумуляторов, предпочтительны электролиты с меньшей вязкостью.

На процесс электролиза влияет (наряду с прочими свойствами) вязкость электролита. При этом в промышленности, например в работе аккумуляторов, предпочтительны электролиты с меньшей вязкостью.

Перекачивают электролиты погружными химическими насосами центробежной конструкции.

Вязкость сыра

Сыр — это пищевой продукт, получаемый из молока путем введения молочнокислых бактерий, ферментов, способствующих его свертыванию, либо посредством плавления молочных продуктов.

Сыры классифицируются на твердые, мягкие, плавленые, рассольные. Показатель вязкости целесообразно рассматривать у плавленых сыров.

Вязкость данного продукта снижается при повышении содержания в нем влаги. На нее также влияет зрелость исходного сырья, вид и доза солей-плавителей, активная кислотность сыра. В слабой степени на вязкость влияет содержание в сырье жира, хотя он и увеличивает пластичность сырной массы.

Вязкость газов

В кинетической теории газов коэффициент внутреннего трения вычисляется по формуле

η=13⟨u⟩⟨λ⟩ρ,{\displaystyle \eta ={\frac {1}{3}}\langle u\rangle \langle \lambda \rangle \rho ,}

где ⟨u⟩{\displaystyle \langle u\rangle } — средняя скорость теплового движения молекул, ⟨λ⟩{\displaystyle \langle \lambda \rangle } − средняя длина свободного пробега. Из этого выражения в частности следует, что вязкость не очень разреженных газов практически не зависит от давления, поскольку плотность ρ{\displaystyle \rho } прямо пропорциональна давлению, а длина пробега ⟨λ⟩{\displaystyle \langle \lambda \rangle } — обратно пропорциональна. Такой же вывод следует и для других кинетических коэффициентов для газов, например, для коэффициента теплопроводности. Однако этот вывод справедлив только до тех пор, пока разрежение газа не становится столь малым, что отношение длины свободного пробега к линейным размерам сосуда (число Кнудсена) не становится по порядку величины равным единице; в частности, это имеет место в сосудах Дьюара (термосах).

С повышением температуры вязкость большинства газов увеличивается, это объясняется увеличением средней скорости молекул газа u{\displaystyle u}, растущей с температурой как T{\displaystyle {\sqrt {T}}}.

Влияние температуры на вязкость газов

В отличие от жидкостей, вязкость газов увеличивается с увеличением температуры (у жидкостей она уменьшается при увеличении температуры).

Формула Сазерленда может быть использована для определения вязкости идеального газа в зависимости от температуры:

μ=μT+CT+C(TT)32,{\displaystyle \mu =\mu _{0}{\frac {T_{0}+C}{T+C}}\left({\frac {T}{T_{0}}}\right)^{3/2},}

где

μ — динамическая вязкость (в Па·с) при заданной температуре T;
μ — контрольная вязкость (в Па·с) при некоторой контрольной температуре T;
T — заданная температура в кельвинах;
T — контрольная температура в кельвинах;
C — постоянная Сазерленда для того газа, вязкость которого требуется определить.

Эту формулу можно применять для температур в диапазоне 0 < T < 555 K и при давлениях менее 3,45 МПа с ошибкой менее 10 %, обусловленной зависимостью вязкости от давления.

Постоянная Сазерленда и контрольные вязкости газов при различных температурах приведены в таблице ниже:

Газ C, K T, K μ, мкПа·с
Воздух 120 291,15 18,27
Азот 111 300,55 17,81
Кислород 127 292,25 20,18
Углекислый газ 240 293,15 14,8
Угарный газ 118 288,15 17,2
Водород 72 293,85 8,76
Аммиак 370 293,15 9,82
Оксид серы(IV) 416 293,65 12,54
Гелий 79,4 273 19

Какая вязкость лучше подходит для двигателя

Чтобы понимать, почему нельзя использовать ту вязкость масла, которая нам больше нравится или кажется более подходящей, нужно понимать, как вязкость влияет на работу двигателя. К примеру, есть ряд маловязких спортивных масел, но, если мы зальем одно из них в обычный двигатель, он не станет от этого спортивным и более быстрым, а, напротив, быстро потеряет мощность и просто «сдохнет».

Вязкость масла подбирается, исходя из его конструкции, рекомендуется производителем и выходить за рекомендованные рамки нельзя. Детали двигателей имеют разные зазоры, новые модели двигателей рассчитаны на экономию топлива и масла, зазоры между деталями минимальные, такие моторы требуют маловязких масел, если же залить более густое, движущиеся элементы будут работать под нагрузкой, постоянно перегреваться, что со временем приведет к ряду неприятных проблем.

Более старые конструкции двигатели имеют большие зазоры между деталями, это предусмотрено и самой конструкцией, и выработкой, которая появляется со временем. Такие двигатели требуют более густых масел, если залить менее густые, образуемая пленка будет недостаточно толстой, в местах контакта разорвется, что приведет к быстрому износу деталей.

Вязкость масла не может быть лучше или хуже, для каждого конкретного двигателя она может быть просто подходящей. В сервисной книжке вы найдете рекомендации как минимум двух подходящих вязкостей для вашего двигателя, и именно между ними нужно выбирать. И не забываем про классы API и ACEA, а также допуски от производителей.

Вязкость каучука

Каучук представляет собой продукт полимеризации некоторых диеновых углеводородов с сопряженными связями. Он может иметь природное или синтетическое происхождение. В процессе вулканизации каучук, сам по себе непрочный и липкий, трансформируется в упругую эластичную резину. Важнейшими свойствами вещества являются эластичность, электроизоляция, газо- и водонепроницаемость.

Как и большинство полимеров, каучук способен пребывать в одном из следующих состояний: стеклообразном, вязкотекучем и высокоэластичном. При обычных температурных условиях вещество высокоэластично.

Вязкость каучука обусловлена его молекулярной массой и способом его синтеза.

Вязкость парафина

Парафин является смесью углеводородов преимущественно метанового ряда. Парафины бывают жидкими (температуре их плавления составляет менее 27 °C), твердыми (28–70 °C), микрокристаллическими (или церезины, плавятся при температуре свыше 60–80 °C). Размер и форма кристаллов обусловлена особенностями их получения. Так, нефтяное сырье и медленное охлаждение обеспечивают мелкие тонкие кристаллы, а крупные получаются из селективно очищенных дистиллятных рафинатов.

Расплавленные парафины обладают небольшой вязкостью. Но при одинаковой температуре наиболее вязкими являются церезины.

Применяются парафины для изготовления парафинистой бумаги, пропитывания древесины в карандашном и спичечном производстве, для аппретирования тканей, в медицине для парафинотерапии и пр.


С этим читают