Ускорение

Содержание

Почему величину g не обозначают буквой a?

Разобравшись подробно с вопросом, как обозначается ускорение в физике, будет интересно также узнать ответ на вопрос данного пункта. Он более чем очевиден: g не обозначают буквой a потому, что она является константой в постоянном гравитационном поле. Более того, буква g отражает природу происхождения этого ускорения.


Что касается обозначения a, то оно отражает переменный характер механического движения. Причиной его появления может быть совершенно любая сила, кроме силы тяжести. Например, это сила мотора двигателя, который раскручивает колеса автомобиля, или сила натяжения нити, создающая центростремительное ускорения при вращении с телом на ее конце. Также это может быть сила трения или сила упругости.

Различные обозначения a и g удобно использовать при решении задач на подъем и падение тел. Например, в случае подъема ракеты или самолета оба ускорения используются для вычисления веса пилотов и пассажиров.

Основные понятия и законы динамики

Часть механики, изучающая причины, вызвавшие ускорение тел, называется динамикой

Первый закон Ньютона: Cуществуют такие системы отсчёта, относительно которых тело сохраняет свою скорость постоянной или покоится, если на него не действуют другие тела или действие других тел скомпенсировано. Свойство тела сохранять состояние покоя или равномерного прямолинейного движения при уравновешенных внешних силах, действующих на него, называется инертностью. Явление сохранения скорости тела при уравновешенных внешних силах называют инерцией. Инерциальными системами отсчёта называют системы, в которых выполняется первый закон Ньютона.

Принцип относительности Галилея:во всех инерциальных системах отсчёта при одинаковых начальных условиях все механические явления протекают одинаково, т.е. подчиняются одинаковым законамМасса — это мера инертности телаСила — это количественная мера взаимодействия тел.

Второй закон Ньютона:Сила, действующая на тело, равна произведению массы тела на ускорение, сообщаемое этой силой: $F{→} = m⋅a{→}$

Сложение сил заключается в нахождении равнодействующей нескольких сил, которая производит такое же действие, как и несколько одновременно действующих сил.

Третий закон Ньютона: Силы, с которыми два тела действуют друг на друга, расположены на одной прямой, равны по модулю и противоположны по направлению: $F_1{→} = -F_2{→} $

III закон Ньютона подчёркивает, что действие тел друг на друга носит характер взаимодействия. Если тело A действует на тело B, то и тело B действует на тело A (см. рис.). Или короче, сила действия равна силе противодействия. Часто возникает вопрос: почему лошадь тянет сани, если эти тела взаимодействуют с равными силами? Это возможно только за счёт взаимодействия с третьим телом — Землёй. Сила, с которой копыта упираются в землю, должна быть больше, чем сила трения саней о землю. Иначе копыта будут проскальзывать, и лошадь не сдвинется с места. Если тело подвергнуть деформации, то возникают силы, препятствующие этой деформации. Такие силы называют силами упругости.

Закон Гука записывают в виде где k — жёсткость пружины, x — деформация тела. Знак «−» указывает, что сила и деформация направлены в разные стороны.

При движении тел друг относительно друга возникают силы, препятствующие движению. Эти силы называются силами трения. Различают трение покоя и трение скольжения. Сила трения скольжения подсчитывается по формуле где N — сила реакции опоры, µ — коэффициент трения. Эта сила не зависит от площади трущихся тел. Коэффициент трения зависит от материала, из которого сделаны тела, и качества обработки их поверхности.

Трение покоя возникает, если тела не перемещаются друг относительно друга. Сила трения покоя может меняться от нуля до некоторого максимального значенияГравитационными силами называют силы, с которыми любые два тела притягиваются друг к другу.

Закон всемирного тяготения:Весом телаСила тяжестиНевесомостьюИскусственный спутник ЗемлиПервая космическая скорость

1.3. Основные понятия и законы статики и гидростатики

устойчивое, неустойчивое и безразличное.устойчивое равновесие.неустойчивое положениебезразличноеПлечом силыУсловие равновесия рычага:Давлениемзакон Паскаля:Гидравлический прессA1 = A2.силой Архимедазакон АрхимедажидкпогрУсловие плавания тела

1.4. Законы сохранения

Импульсом телаимпульсом силы.закон сохранения импульсаМеханической работойМощностьэнергией.кинетическую и потенциальную.кинетической энергией.потенциальной энергией.Энергия сжатой пружины:механическую энергию.закон сохранения механической энергии

1.5. Механические колебания и волны

КолебаниямиГармоническими колебаниямиамплитудой колебанийПериодом TЧастотой периодических колебаний-1Математическим маятникомПериод колебаний математического маятникаПериод колебаний груза на пружинеРаспространение колебаний в упругих средах.поперечнойпродольнойДлиной волныЗвуковыми волнами

Физические величины в кинематике

Когда тело движется в пространстве, то нам важно знать, какое расстояние оно проходит за указанный промежуток времени и вдоль какой траектории движется. Для описания пройденных расстояний в физике используют понятие пути — L

В случае движения по окружности вместо пути пользуются понятием угла поворота — θ. Величину L в СИ измеряют в метрах (м), а величину θ — в радианах (рад.)

Для описания пройденных расстояний в физике используют понятие пути — L. В случае движения по окружности вместо пути пользуются понятием угла поворота — θ. Величину L в СИ измеряют в метрах (м), а величину θ — в радианах (рад.).

Помимо пути важно знать также скорость движения тел. Под ней понимают быстроту прохождения расстояний

Математическое выражение для линейной скорости принимает вид:

Для описания движения по окружности применяют угловую скорость ω, которая рассчитывается так:

Третьей важной величиной кинематики является ускорение

Что такое ускорение? Это величина в физике, которая показывает, как быстро меняется скорость во времени. Математически это можно записать так:

Если подставить в эту формулу ускорения выражение для скорости, получим:

Ускорение — это первая производная скорости по времени или вторая производная по времени пройденного пути.

Отрицательное ускорение

Отрицательное ускорение при торможении, в также ускорение разгона при подъеме должны быть ограничены, исходя из условия прочности оборудования и напряжений в элементах перемещаемой бурильной колонны.  

Отрицательное ускорение при торможении, а также ускорение разгона при подъеме должны быть ограничены исходя из условия прочности оборудования и напряжений в элементах перемещаемой колонны.  

Отрицательное ускорение приводит к уменьшению скорости и тем самым силы сопротивления.  

Вследствие огромного отрицательного ускорения при торможении на очень коротком отрезке пути электроны испускают электромагнитные волны с очень большой частотой, порядка 1018 — 10 сек-1. Чем выше приложенное напряжение U, тем ббльшую скорость имеют электроны в момент удара, тем резче они тормозятся и тем более высокую частоту ( и соответственно более короткую длину волны) имеют испускаемые ими рентгеновы лучи.  

При отрицательном ускорении давление на стенку скважины может снижаться до значения ниже гидростатического. Эти изменения гидродинамического давления создают знакопеременные нагрузки на пласты.  

При отрицательном ускорении ( равномерно-замедленное движение) график скорости также изображается прямой линией, однако прямая наклонена в этом случае вниз.  

Графики скорости различных равноускоренных движений.| Графики скорости равноускоренных ( I, III и равнозамедленных ( И, IV движений.  

При отрицательном ускорении ( равнозамедленное движение) график скорости также изображается прямой линией, однако прямая наклонена в этом случае вниз.  

При отрицательном ускорении процесса старения СИ межремонтный период увеличивается. СИ работает до тех пор, пока морально не устареет.  

Наибольшие величины отрицательного ускорения при шк 12 56 рад / сек приняты в у олэ — 900 и / ОЛ8 — 800 см / сек. В этом случае, в результате расчета, получено, что ползун может двигаться ускоренно менее чем на х / 3 пути, а на остальном пути должен двигаться замедленно.  

Это соответствует наибольшему отрицательному ускорению.  

Движение с постоянным отрицательным ускорением называют равнозамедленным движением.  

В результате решения получается отрицательное ускорение, а в ответе оно положительное.  

Найти: 1) отрицательное ускорение поезда, 2) расстояние, пройденное им за время тормо — жения.  

Таким образом, наличие отрицательного ускорения при оптимальном движении уменьшает величину потребной тяги для горизонтального полета.  

Подробнее о скорости: что же это такое

Достаточно просто, не так ли? Точнее говоря (физики очень любят точность), скорость равняется изменению положения, деленному на изменение времени. Потому скорость движения вдоль оси X можно выразить следующим образом:

В реальном мире скорость может принимать очень разные формы, некоторые из них описываются в следующих разделах.

Смотрим на спидометр: мгновенная скорость

Итак, у нас уже есть общее представление о скорости. Именно ее измеряет спидометр автомобиля, не так ли? Когда вы катите по прямолинейному шоссе, все, что нужно делать, — всего лишь следить за показаниями спидометра. “Уже 140 километров в час. Пожалуй, сбросим скорость до 120”. Именно так мы часто поступаем в жизни, а иначе говоря, так мы определяем мгновенную скорость.

Движемся постоянно: равномерная скорость

А что если долгое время автомобиль едет со скоростью 120 километров в час? В физике эта скорость называется равномерной (или постоянной), а в жизни она возможна только при движении на абсолютно ровных и прямолинейных дорогах, когда долгое время можно поддерживать движение без изменения скорости.

Равномерное движение с постоянной скоростью является простейшим видом движения, поскольку оно никак не меняется.

Движемся вперед и назад: неравномерное движение

Название этого типа движения говорит само за себя: неравномерное движение означает движение со скоростью, меняющейся со временем. Именно с такой скоростью мы чаще всего сталкиваемся в повседневной жизни. Вот как выглядит уравнение изменения скорости от исходной скорости ​\( v_1 \)​ до конечной скорости ​\( v_0 \)​:

Остальная часть этой главы посвящена ускорению, которое характеризует неравномерность движения.

Жмем на секундомер и определяем среднюю скорость

Выражение со скоростями не так уж неосязаемо, как может показаться. Измерения скорости можно сделать более конкретными. Допустим, что вам хочется совершить путешествие из Нью-Йорка в Лос-Анджелес, которые находятся на расстоянии около 2781 миль друг от друга. Если предположить, на это путешествие ушло 4 суток, то какой была ваша скорость?

Скорость можно найти, если поделить пройденное расстояние на затраченное на это время:

Итак, результат 695,3 получен, но в каких единицах он выражен?

В этом выражении мили делятся на сутки, т.е. результат равен 695,3 милям в сутки. Это не совсем стандартная единица измерений и вполне естественно было бы поинтересоваться: а сколько это миль в час? Для ответа на этот вопрос нужно перевести сутки в часы, как показано в главе 2. Поскольку в сутках 24 часа, то получим следующий результат:

Итак, получен более понятный результат 28,97 миль в час. Смущает лишь столь малая величина скорости, ведь обычно машины едут со скоростью в 2-3 раза быстрее, однако среднюю скорость для всего путешествия мы вычислили, разделив все расстояния на все время, включая время отдыха.

Средняя скорость и неравномерное движение

Средняя скорость отличается от мгновенной, если только вы не движетесь равномерно, когда скорость вообще не меняется. А средняя скорость неравномерного движения, когда все расстояние делится на все время, может отличаться от мгновенной скорости.

Путешествуя из Нью-Йорка в Лос-Анджелес, вам наверняка придется провести несколько ночей в отелях, и во время вашего отдыха мгновенная скорость автомобиля равна 0 миль в час, а средняя скорость — 28,97 миль в час! Дело в том, что средняя скорость получена в результате деления всего расстояния на все время.


Средняя скорость может зависеть от фактически пройденного пути. Допустим, что, путешествуя по штату Огайо, вы решили подвезти попутчика в штат Индиана и погостить у вашей сестры в штате Мичиган. Все путешествие может иметь вид, показанный на рис. 3.3: первые 80 миль — в штат Индиана, а потом 30 миль — в штат Мичиган.

Если ехать со скоростью 55 миль в час, то для преодоления всего пути длиной 80 + 30 = 110 миль потребуется 2 часа. Но если взять расстояние по прямой между начальной и конечной точкой путешествия, которое равно 85,4 миль, то средняя скорость будет равна:

Таким образом, получена средняя скорость для расстояния от начальной до конечной точки путешествия вдоль пунктирной линии. Но если вам нужно определить скорость для каждого из двух отрезков фактически пройденного пути, то нужно измерить длину каждого из двух отрезков и разделить их на время их прохождения.

При движении с равномерной скоростью это можно сделать легко и просто, поскольку в таком случае средняя скорость равняется мгновенной скорости в любой точке пути.

Угловое ускорение при вращении тела вокруг неподвижной оси.

Когда происходит вращение тела около неподвижной оси, которая проходит через недвижимые точки тела О1 и О2, производные орта оси вращения = 0:

.

Отсюда вектор углового ускорения вычисляется тривиально через вторую производную угла поворота

 или .

где  — это алгебраическая величина углового ускорения.

Здесь псевдовектор углового ускорения (и угловая скорость) идет по оси вращения тела. В случае наличия одинакового знака у первой и второй производной угла поворота:

,

значит, вектор углового ускорения и вектор угловой скорости имеют одинаковое направление и тело имеет ускоренное вращение. Иначе, при , векторы угловой скорости и углового ускорения имеют противоположные направления, а, значит, тело вращается замедленно.

В теормехе обычно вводится понятие угловой скорости и углового ускорения, когда рассматривается вращение тела вокруг не двигающейся оси. При чем, для решения задачи используют зависимость от времени угла поворота тела

φ = φ (t).

Отсюда закон движения точки тела можно выразить натурально, как длина дуги окружности, которую прошла точка, совершая поворот тела от определенного исходного положения  φ = φ (t)

s(t) = R (φ(t) – φ).

где R является расстоянием от точки до оси вращения.

Продифференцировав вышеуказанное выражение по времени, найдем алгебраическую скорость точки:

.

где  является алгебраической величиной скорости угловой.

Через геометрическую сумму тангенциального и нормального ускорения можно выразить ускорение точки тела при вращении:

.

При этом тангенциальное ускорение выходит в виде производной от алгебраической скорости точки:

.

где  является алгебраической величиной углового ускорения. А при помощи ниже приведенной формулы определим нормальное ускорение точки тела:

Примечания

  1. Маркеев А. П. Теоретическая механика. — М.: ЧеРо, 1999. — С. 59. — 572 с.
  2. Обзор результатов Ривальса:
  3. Для того, чтобы использовать уравнение движения в форме, совпадающей с формой уравнения второго закона Ньютона, применительно к ускорениям, возникающим в неинерциальных системах отсчёта даже в отсутствие каких-либо воздействий на тело, вводят фиктивные силы инерции. Например, пусть тело массой m покоится в инерциальной системе отсчёта на некотором расстоянии R от оси. Если привести систему отсчёта во вращение с угловой скоростью ω вокруг этой оси, то система становится неинерциальной, а тело будет совершать видимое вращательное движение с линейной скоростью vR по окружности вокруг оси. Для его описания во вращающейся системе отсчёта необходимо ввести центростремительное ускорение, которое можно формально считать результатом действия одной из сил инерции — силы Кориолиса, равной по модулю 2mvω и направленной к оси, перпендикулярно оси и скорости тела; при этом она наполовину компенсируется действием другой силы инерции — центробежной силы, равной по модулю mvω и направленной от оси вращения.
  4. Кошкин Н.И., Ширкевич М.Г. Справочник по элементарной физике. — 10-е, испр. и доп.. — М.: Наука, 1988. — С. 61. — 256 с. — ISBN 5-02-013833-9.

Связываем ускорение, время и перемещение

Итак, в этой главе вы познакомились с четырьмя параметрами движения: ускорением, скоростью, временем и перемещением. Перемещение и время связаны следующим простым соотношением для скорости:

Аналогично, скорость и время связаны следующим простым соотношением для ускорения:

Однако эти соотношения связывают только по два “уровня” переменных, т.е. скорость с перемещением и временем, а ускорение со скоростью и временем. А как связать три “уровня” переменных, т.е. ускорение со временем и перемещением?

Допустим, что вы участвуете в гонке и после пробного заезда хотели бы знать ускорение, которое способен обеспечить ваш автомобиль по известному пройденному пути 402 метра за 5,5 секунд. Таким образом, получается задача, в которой нужно связать ускорение с перемещением и временем.

Итак, для решения этой задачи нужно вывести уравнение связи ускорения с перемещением и временем.

Не такие уж и далекие связи


Попробуем связать ускорение, перемещение и время, жонглируя разными переменными, пока не получим нужный результат. Перемещение равно средней скорости, умноженной на время:

Итак, у нас есть отправная точка. Какова средняя скорость автомобиля из предыдущего примера? Начальная скорость была равна 0, а конечная — очень большой. Поскольку ускорение было постоянным, то скорость росла линейно от нуля до конечного значения (рис. 3.5).

При постоянном ускорении средняя скорость равна половине суммы конечной и начальной скоростей:

Конечная скорость равна:

Тогда средняя скорость равна:

Теперь подставим это выражение для средней скорости в уравнение для перемещения ​\( s=\overline{v}t \)​ и получим:

Теперь вместо переменной ​\( t \)​ можно подставить исходную разность конечного и начального моментов времени и получим:

Ура! Мы вывели одно из наиболее важных соотношений между ускорением, перемещением, временем и скоростью, которые используются в физических задачах.

Выводим более сложные соотношения

А что если движение началось не с нулевой начальной скоростью? Как в таком случае связать ускорение, время и перемещение? Как такое начальное значение скорости, например 100 миль в час, повлияет на величину пройденного расстояния? Поскольку расстояние равно скорости, умноженной на время, то искомое соотношение имеет следующий вид:

Такое выражение не так уж и легко запомнить, если, конечно, вы не обладаете фотографической памятью. Сложно даже запомнить более простую формулу связи между перемещением и временем для движения с постоянным ускорением, с нулевого начального момента и с нулевой начальной скоростью:

Так каким же было ускорение автомобиля в одном из предыдущих примеров? Теперь мы знаем, как связаны перемещение, ускорение и время, и для ответа на этот вопрос нужно применить алгебраические навыки. Итак, мы имеем:

После деления обеих частей на \( t^2 \) и умножения на 2 получим:

Великолепно! Подставляя числа, получим:

Итак, получилось, что ускорение автомобиля равно 27 метров в секунду в квадрате. Насколько велико это ускорение? Например, ускорение свободного падения в поле тяготения Земли, ​\( g \)​, равно около 9,8 метров в секунду в квадрате, т.е. ускорение автомобиля приблизительно равно ​\( 2,7g \)​.

Мгновенное ускорение

Мгновенное ускорение тела (материальной точки) в данный момент времени – это физическая величина, равная пределу, к которому стремится среднее ускорение при стремлении промежутка времени к нулю. Иными словами – это ускорение, которое развивает тело за очень короткий отрезок времени:

При ускоренном прямолинейном движении скорость тела возрастает по модулю, то есть

v2 > v1

а направление вектора ускорения совпадает с вектором скорости 

Если скорость тела по модулю уменьшается, то есть

v2 < v1

то направление вектора ускорения противоположно направлению вектора скорости  Иначе говоря, в данном случае происходит замедление движения, при этом ускорение будет отрицательным (а < 0). На рис. 1.9 показано направление векторов ускорения при прямолинейном движении тела для случая ускорения и замедления.

Рис. 1.9. Мгновенное ускорение.

При движении по криволинейной траектории изменяется не только модуль скорости, но и её направление. В этом случае вектор ускорение представляют в виде двух составляющих (см. следующий раздел).

Ускорение в теории относительности

Основная статья: 4-ускорение

В теории относительности движение тела с переменной скоростью вдоль мировой линии в 4-мерном пространстве-времени характеризуется определённой величиной, аналогичной ускорению. В отличие от обычного (трёхмерного) вектора ускорения, 4-вектор ускорения (называемый 4-ускорением) ai является второй производной от 4-вектора координат xi не по времени, а по пространственно-временному интервалу τ (или, что то же самое, по собственному времени) вдоль мировой линии тела:

ai=d2xidτ2=duidτ.{\displaystyle a^{i}={\frac {d^{2}x^{i}}{d\tau ^{2}}}={\frac {du^{i}}{d\tau }}.}

В любой точке мировой линии 4-вектор ускорения всегда ортогонален к 4-скорости:

uiai=.{\displaystyle u_{i}a^{i}=0\,.}

Это означает, в частности, что 4-скорости меняются не по модулю, а лишь по направлению: независимо от направления в пространстве-времени 4-скорость любого тела равна по модулю скорости света. Геометрически, 4-ускорение совпадает с кривизной мировой линии и является аналогом нормального ускорения в классической кинематике.

В классической механике значение ускорения не изменяется при переходе от одной инерциальной системы отсчета к другой, то есть ускорение инвариантно относительно преобразований Галилея. В релятивистской механике 4-ускорение является 4-вектором, то есть при преобразованиях Лоренца изменяется аналогично пространственно-временным координатам.

«Обычный» трёхмерный вектор ускорения w→{\displaystyle {\vec {w}}} (то же, что a→(t){\displaystyle {\vec {a}}(t)} в предыдущих разделах, обозначение заменено во избежание путаницы с 4-ускорением), определяемый как производная «обычной» трёхмерной скорости v→{\displaystyle {\vec {v}}} по координатному времени w→=dv→dt{\displaystyle {\vec {w}}=d{\vec {v}}/dt}, применяется и в рамках релятивистской кинематики, но инвариантом преобразований Лоренца не является. В мгновенно сопутствующей инерциальной системе отсчёта 4-ускорение — это a=(,w→).{\displaystyle a=(0,{\vec {w}}).} При действии постоянной силы ускорение точки w→{\displaystyle {\vec {w}}} уменьшается с ростом скорости, однако 4-ускорение остаётся неизменным (такой случай именуют релятивистски равноускоренным движением, хотя «обычное» ускорение при этом не постоянно).

Направление вектора ускорения

Направление вектора ускорения изображено на рисунках

На этом рисунке машина движется в положительном направлении вдоль оси Ox, вектор скорости всегда совпадает с направлением движения (направлен вправо). Когда вектор ускорение совпадает с направлением скорости, это означает, что машина разгоняется. Ускорение положительное.

При разгоне направление ускорения совпадает с направлением скорости. Ускорение положительное.

На этом рисунке машина движется в положительном направлении по оси Ox, вектор скорости совпадает с направлением движения (направлен вправо), ускорение НЕ совпадает с направлением скорости, это означает, что машина тормозит. Ускорение отрицательное.

При торможении направление ускорения противоположно направлению скорости. Ускорение отрицательное.


Разберемся, почему при торможении ускорение отрицательное. Например, теплоход за первую секунду сбросил скорость с 9м/с до 7м/с, за вторую секунду до 5м/с, за третью до 3м/с. Скорость изменяется на «-2м/с». 3-5=-2; 5-7=-2; 7-9=-2м/с. Вот откуда появляется отрицательное значение ускорения.

При решении задач, если тело замедляется, ускорение в формулы подставляется со знаком «минус».

Свободное падение

Так называют вертикальное движение тела в гравитационном поле планеты, осуществляемое под действием силы тяжести. Как правило, соответствующее ускорение обозначают буквой g. Например, для Земли оно составляет 9,81 м/с2. Приведем все формулы для ускорения g:

Первое из приведенных выражений позволяет определить ускорение g, если известны масса планеты M и ее радиус R. G — это гравитационная постоянная. Эта формула следует из закона Всемирного тяготения Ньютона.

Второе выражение — это всем известное уравнение для силы тяжести F, которая действует на тело массой m.

Наконец, третья формула определяет ускорение через высоту падения h и время падения t тела без начальной скорости. Это выражение является одним из основных в кинематике прямолинейного движения.

Примечания

  1. У планет газовых гигантов и звёзд «поверхность» понимается как область меньших высот в атмосфере, где давление равно атмосферному давлению на Земле на уровне моря (1,013×105Па). Также у звёзд поверхностью иногда считают поверхность фотосферы.
  2. Аналог уравнения второго закона Ньютона, выполняющийся для неинерциальных систем отсчёта.
  3.  (англ.). Международное бюро мер и весов. Дата обращения 9 апреля 2013.
  4. Деньгуб В. М., Смирнов В. Г. Единицы величин. Словарь-справочник. — М. : Изд-во стандартов, 1990. — С. 237.
  5. . physics.nist.gov. Дата обращения 7 марта 2020.
  6. Грушинский Н. П. // Физическая энциклопедия : / Гл. ред. А. М. Прохоров. — М.: Советская энциклопедия, 1988. — Т. 1: Ааронова — Бома эффект — Длинные линии. — С. 521. — 707 с. — 100 000 экз.
  7. // Физическая энциклопедия : / Гл. ред. А. М. Прохоров. — М.: Большая российская энциклопедия, 1994. — Т. 4: Пойнтинга — Робертсона — Стримеры. — С. 245—246. — 704 с. — 40 000 экз. — ISBN 5-85270-087-8.

ФизикаУчебник для 10 класса

График модуля скорости

При равномерном прямолинейном движении скорость vx = const. Следовательно, и ее модуль v = const, т. е. не изменяется с течением времени. Графиком зависимости модуля скорости от времени1 является прямая АВ, параллельная оси времени и расположенная выше этой оси, так как v > О (рис. 1.9).

Рис. 1.9

Площадь прямоугольника ОАВС, заштрихованного на рисунке, численно равна пути, пройденному телом за время t. Ведь сторона ОА в определенном масштабе есть модуль скорости v, а сторона ОС — время движения t, поэтому s = vt.

График скорости

В отличие от модуля скорости скорость, определяемая выражением (1.4.1), может быть положительной или отрицательной. Поэтому графиком зависимости скорости vx от времени t может быть либо прямая ВС, либо прямая KF (рис. 1.10).

Рис. 1.10

Обе прямые параллельны оси времени. Прямая ВС соответствует положительному значению скорости (v1x > 0), а прямая KF — отрицательному значению (v2x < 0).

Площади прямоугольников OBCD и OEFK, заштрихованных на рисунке, численно равны соответствующим изменениям координат движущихся тел за время их движения. Так как v1x > О, то изменение координаты первого тела Аx1 = v1xt1 положительно. Поэтому и площади прямоугольника OBCD приписывается положительный знак. Скорость движения второго тела отрицательна: v2x < 0. Поэтому отрицательным будет и изменение координаты Ах2 = v2xt2. В этом случае изменение координаты численно равно площади лежащего ниже оси времени прямоугольника OEFK, взятой со знаком «минус».

График пути

При равномерном прямолинейном движении путь прямо пропорционален времени, так как модуль скорости v = const: s = vt. Следовательно, графиком, выражающим зависимость пути от времени, является прямая, выходящая из начала координат (s(0) = 0). Помните, что путь не бывает отрицательным и не может уменьшаться в процессе движения. Чем больше модуль скорости, тем больший угол образует график с осью времени.

На рисунке 1.11 представлены графики пути 1 и 2 для двух движущихся тел. Так как за 2 с первое тело прошло путь 1 м, то модуль скорости первого тела равен v1 = 0,5 м/с.

Рис. 1.11

Модуль скорости второго тела равен v2 = 2 м/с, так как за 1 с тело прошло путь 2 м.

Для того чтобы по графику зависимости пути от времени определить путь, пройденный телом за определенный промежуток времени, надо из точки на оси времени, соответствующей концу промежутка, восставить перпендикуляр до пересечения с графиком, а затем из этой точки опустить перпендикуляр на ось s. Точка пересечения его с этой осью и будет значением пути в данный момент времени.

График координаты

Так как координата при равномерном прямолинейном движении является линейной функцией времени х = х + vxt, то график зависимости координаты от времени представляет собой прямую линию.

На рисунке 1.12 приведены графики зависимости координаты от времени для трех случаев. Прямая 1 соответствует случаю движения при x01 = 0, v1x > 0; прямая 2 — случаю, когда х02 < 0, v2x > 0; а прямая 3 — случаю, когда х03 > 0, v3x < 0. Скорость v2x больше, чем v1x.

Рис. 1.12

Посмотрим, какие сведения можно извлечь из графика АВ равномерного движения тела (рис. 1.13).

Рис. 1.13

В начальный момент времени (t = 0) тело имело координату х = 3 м, в момент времени t1 = 6 c координата тела х1 = 0, т. е. оно находилось в начале координат, а в момент времени t2 = 9 с тело находилось на оси X в точке с координатой х2 = -1,5 м. Все это время тело двигалось противоположно положительному направлению оси X.

Скорость тела равна vx = = -0,5 м/с, а модуль скорости v = 0,5 м/с.

Обратите внимание на то, что по графику зависимости x(t) можно судить о «прошлом» в движении тела, т. е

можно находить положения тела до начала отсчета времени при условии, что и до этого момента тело двигалось равномерно и прямолинейно с той же скоростью. Моменты времени до начала отсчета считаются отрицательными. Согласно рисунку 1.13 за 3 с до начала отсчета времени тело имело координату 4,5 м.

Все графики равномерного прямолинейного движения представляют собой прямые линии. Для их построения достаточно указать значения x(t) или s(t) для двух моментов времени.

1 В дальнейшем для краткости мы будем часто говорить: «график модуля скорости», «график проекции скорости» и т. д.

Ускорения в кинематике твёрдого тела

Связь ускорений двух точек абсолютно твёрдого тела A и B можно получить из формулы Эйлера для скоростей этих точек:

v→B=v→A+ω→×AB→,{\displaystyle {\vec {v}}_{B}={\vec {v}}_{A}+\left,}

где ω→{\displaystyle {\vec {\omega }}} — вектор угловой скорости тела. Продифференцировав её по времени, получаем формулу Ривальса (Marc-Joseph-Émilien Rivals, 1833–1889):

a→B=a→A+ω→×ω→×AB→+ε→×AB→,{\displaystyle {\vec {a}}_{B}={\vec {a}}_{A}+\left\right]+\left,}

где ε→{\displaystyle {\vec {\varepsilon }}} — вектор углового ускорения тела.

Второе слагаемое называется осестремительным ускорением, а третье — вращательным ускорением.

Ускорение автомобиля

Если автомобиль проходит в каждую секунду одинаковое число метров, движение называется равномерным или установившимся. Если пройденный автомобилем путь в каждую секунду (скорость) изменяется, движение называется:

  • при увеличении скорости — ускоренным
  • при уменьшении скорости — замедленным

Приращение скорости в единицу времени называют ускорением, уменьшение скорости в единицу времени — отрицательным ускорением, или замедлением.

Ускорение измеряют приростом или убыванием скорости (в метрах в секунду) за 1 сек. Если за секунду скорость увеличивается на 3 м/сек, ускорение равно 3 м/сек в секунду или 3 м/сек/сек или 3 м/сек2.

Ускорение обозначают буквой j.

Ускорение, равное 9,81 м/сек2 (или округленно, 10 м/сек2), соответствует ускорению, которое, как известно из опыта, имеет свободно падающее тело (без учета сопротивления воздуха), и называется ускорением силы тяжести. Его обозначают буквой g.

Вывод

Вывод 1

В большинстве случаев ускорение направлено под некоторым углом к скорости. Составляющую ускорения, которая направлена вдоль скорости, называют тангенциальным ускорением. Тангенциальное ускорение описывает быстроту изменения скорости по модулю:

Вывод 2

Если траектория гладкая (что предполагается), то:

  • изменения направления вектора v {\displaystyle \mathbf {v} \ } дадут в проекции на касательную малую величину не ниже второго порядка по dt {\displaystyle dt\ }, которой можно поэтому пренебречь.
  • изменение длины вектора v {\displaystyle \mathbf {v} \ } будет отличаться от проекции изменения v {\displaystyle \mathbf {v} \ } на касательную тоже на величину не ниже второго порядка.

То и другое следует из того, что угол вектора v {\displaystyle \mathbf {v} \ } к касательной будет не ниже первого порядка по dt {\displaystyle dt\ }. Отсюда сразу же следует искомая формула.

Говоря менее строго, проекция v {\displaystyle \mathbf {v} \ } на касательную при малых dt {\displaystyle dt\ } будет практически совпадать с длиной вектора v {\displaystyle \mathbf {v} \ }, поскольку угол отклонения этого вектора от касательной при малых dt {\displaystyle dt\ } всегда мал, а значит косинус этого угла можно считать равным единице .


С этим читают