Устройство системы питания автомобиля

Что это такое?

Common Rail — это система впрыска, которую можно охарактеризовать, как впрыск смеси воздуха и дизеля под достаточно высоким, но атмосферным давлением. В результате с этой схемой можно понизить расход, а мощность увеличится.


Конечно, это далеко не все, на что способна эта схема. Удалось понизить шум и увеличить крутящий момент. Новая система стала особо популярной И сегодня каждая вторая машина оснащается вот этой самой схемой.

Недостатками системы считают высокие требования, которые предъявляются к качеству солярки. Если даже самые мелкие частицы проникнут в систему питания, тогда форсунки с управлением от ЭБУ могут выйти из строя.

Описание устройства топливной системы дизеля

Топливная система дизельного мотора состоит из следующих составных частей:

  1. Топливный бак.
  2. Магистральные топливопроводы.
  3. Насос низкого давления.
  4. Топливный фильтр грубой, а также тонкой очистки.
  5. Насос ТНВД высокого давления.
  6. Распыляющие форсунки-дозаторы.

Как было отмечено выше, система разделена на отдельные контуры, работающие в условиях различного давления. Контур низкого давления состоит из:

  • топливного фильтра;
  • сепаратора;
  • специального приводного механизма;
  • подогревателя;
  • топливного насоса ТННД.

При прохождении топлива через каждый элемент происходят соответствующие преобразования:

  1. Благодаря подогреву, холодная загустевшая солярка обретает текучесть.
  2. При помощи фильтрующего элемента горючее очищается от инородных включений и прочих загрязнений.
  3. Помпа обеспечивает напор топлива, необходимый для подачи во второй отсек повышенного давления.

В конструкцию второго контура входят следующие устройства:

  • насос ТНВД (высокого давления);
  • фильтр тонкой очистки;
  • распыляющие форсунки, обеспечивающие дозированный впрыск топлива;
  • система топливопроводных магистралей.

Разжиженное горючее под давлением в расчетном количестве подается в цилиндры по топливопроводным трубкам.

Создание низкого давления

Ступень низкого давления в топливной системе Common Rail включает в себя:

  • топливный бак (1) с фильтром-топливоприемником (2);
  • топливоподкачивающий насос (3);
  • фильтр тонкой очистки топлива (4);
  • трубопроводы линии низкого давления (5).

Топливный бак


Как следует из его названия, топливный бак служит для хранения топлива. Он должен быть выполнен из материала, устойчивого к коррозии, и не иметь утечек топлива даже при давлении, в два раза превышающем рабочее, но по крайней мере при превышении давления на 0,3 бар. Топливный бак должен быть оснащен предохранительными клапанами, чтобы сбрасывать избыточное давление. Не должно быть утечек топлива ни после топливозаливной горловины, ни через устройства выравнивания давления. Это также относится к случаям воздействия неровностей дороги, поворотам (закруглениям дороги) или наклонным положениям автомобиля.

Топливный бак и двигатель должны отстоять достаточно далеко один от другого, чтобы в случае аварии была исключена опасность пожара. Это не относится к тракторам с открытой кабиной, мотоциклам и мопедам. Для транспортных средств с открытой кабиной, тракторов и автобусов принимаются специальные правила, касающиеся расположения топливных баков и защитных экранов.

Трубопроводы линий низкого давления топлива

В качестве альтернативы стальным трубкам, в линиях низкого давления могут использоваться пламезащитные армированные гибкие шланги. Они должны быть защищены от механических повреждений и проложены таким образом, чтобы исключить возможность появления капель или испарения топлива, скапливающегося на нагретых деталях, где оно может воспламениться.

В случае деформирования кузова при аварии или перемещении двигателя не должны иметь место разрушающие последствия топливной системы. Все трубопроводы топливной системы должны быть защищены от нагрева. В автобусах топливные трубопроводы не должны располагаться в пассажирском салоне или в кабине водителя, и не должна осуществляться подача топлива под действием сил тяжести.

Подкачивающий насос

Подкачивающий насос может быть либо электрическим с фильтром-топливоприемником, либо шестеренчатым. Насос забирает топливо из топливного бака и непрерывно подает его в необходимом количестве в насос высокого давления.

Фильтр тонкой очистки топлива

Недостаточная фильтрация топлива может привести к повреждению элементов ТНВД, нагнетательных клапанов и форсунок. Топливный фильтр очищает топливо до его поступления в ТНВД и, таким образом, предотвращает преждевременный износ прецизионных деталей ТНВД.

История

Первые открытия

В 1839 году была опубликована заметка британского ученого Уильяма Роберта Грове в которой он описал опыт, где обнаружил «постоянное отклонение» стрелки гальванометра между двумя платиновыми электродами, омываемыми одна кислородом, другая — водородом. Позже он выяснил, что процесс электролиза обратим, то есть водород и кислород можно объединить в молекулы воды без горения, но с выделением тепла и электричества. Свой прибор, где удалось провести эту реакцию, ученый назвал «газовой батареей», и это был первый топливный элемент.

В 1937 г. профессор Ф.Бэкон начал работы над своим топливным элементом. К концу 1950-х он разработал батарею из 40 топливных элементов, имеющую мощность 5 кВт. Такую батарею можно было применить для обеспечения энергией сварочного аппарата или грузоподъемника. Батарея работала при высоких температурах порядка 200°С и более и давлениях 20-40 бар. Кроме того, она была весьма массивна.

История исследований в СССР и России

В СССР первые публикации о топливных элементах появились в 1941 году.

Первые исследования начались в -х годах. РКК «Энергия» (с 1966 года) разрабатывала PAFC элементы для советской лунной программы. С 1987 года по «Энергия» произвела около 100 топливных элементов, которые наработали суммарно около 80000 часов.

Во время работ над программой «Буран», исследовались щелочные AFC элементы. На «Буране» были установлены 10 кВт топливные элементы.

В — годы «Квант» совместно с рижским автобусным заводом «РАФ» разрабатывали щелочные элементы для автобусов. Прототип автобуса на топливных элементах был изготовлен в 1982 году.

В 1989 году «Институт высокотемпературной электрохимии» (Екатеринбург) произвёл первую SOFC установку мощностью 1 кВт.

В 1999 году АвтоВАЗ начал работы с топливными элементами. К 2003 году на базе автомобиля ВАЗ-2131 было создано несколько опытных экземпляров. В моторном отсеке автомобиля располагались батареи топливных элементов, а баки со сжатым водородом в багажном отделении, то есть была применена классическая схема расположения силового агрегата и топливных баков-баллонов. Разработками водородного автомобиля руководил кандидат технических наук Мирзоев Г. К.

10 ноября 2003 года было подписано Генеральное соглашение о сотрудничестве между Российской академией наук и компанией «Норильский никель» в области водородной энергетики и топливных элементов. Это привело к учреждению4 мая 2005 года Национальной инновационной компании «Новые энергетические проекты» (НИК НЭП), которая в 2006 году произвела резервную энергетическую установку на основе ТЭ с твёрдым полимерным электролитом мощностью 1 кВт. По сообщению Информационного агентства «МФД-ИнфоЦентр», ГМК «Норильский никель» ликвидирует компанию «Новые энергетические проекты» в рамках объявленного в начале 2009 года решения избавляться от непрофильных и убыточных активов.

В 2008 году была основана компания «ИнЭнерджи», которая занимается научно-исследовательскими и опытно-конструкторскими работами в области электрохимических технологий и систем электропитания. По результатам проведенных исследований, при кооперации с ведущими институтами РАН (ИПХФ, ИФТТ и ИХТТ), был реализован ряд пилотных проектов, показавших высокую эффективность. Для компании «МТС» была создана и введена в эксплуатацию модульная система резервного питания на базе водородно-воздушных топливных элементов, состоящая из ТЭ, системы управления, накопителя электроэнергии и преобразователя. Мощность системы до 10кВт.

Водородно-воздушные энергетические системы обладают рядом неоспоримых преимуществ, среди которых широкий температурный диапазон эксплуатации внешней среды (-40..+60С), высокий КПД (до 60%), отсутствие шума и вибраций, быстрый старт, компактность и экологичность (вода, как результат “выхлопа”).

Совокупная стоимость владения водородно-воздушных систем значительно ниже обычных электрохимических батарей. Кроме того, они обладают высочайшей отказоустойчивостью за счет отсутствия движущихся частей механизмов, не нуждаются в техническом обслуживании, а срок их эксплуатации достигает 15 лет, превосходя классические электрохимические батареи вплоть до пяти раз.

Над созданием образцов электростанций на топливных элементах работают Газпром и федеральные ядерные центры РФ. Твердооксидные топливные элементы, разработка которых сейчас активно ведётся, появятся, видимо, после 2016-го года.

Элементы на углеводородном и угольном топливах.

Топливные элементы, которые могут превращать химическую энергию таких широко доступных и сравнительно недорогих топлив, как пропан, природный газ, метиловый спирт, керосин или бензин, непосредственно в электричество, являются предметом интенсивного исследования. Однако пока не достигнуто заметных успехов в создании топливных элементов, работающих на газах, получаемых из углеводородного топлива, при нормальной температуре.

Для повышения скорости реакции углеводородного и угольного топлива приходится повышать рабочую температуру топливного элемента. Электролитами служат расплавы карбонатов или других солей, которые заключаются в пористую керамическую матрицу. Топливо «расщепляется» внутри элемента с образованием водорода и оксида углерода, которые поддерживают протекание токообразующей реакции в элементе.

Коэффициент полезного действия.


Превращение энергии обычных топлив (угля, нефти, природного газа) в электричество было до сих пор многоступенчатым процессом. Сжигание топлива, позволяющее получить пар или газ, необходимые для работы турбины или двигателя внутреннего сгорания, которые, в свою очередь, вращают электрический генератор, – процесс не очень эффективный. Действительно, коэффициент использования энергии такого превращения ограничен по второму закону термодинамики, и его вряд ли можно существенно поднять выше существующего уровня (см. также ТЕПЛОТА; ТЕРМОДИНАМИКА). Коэффициент использования энергии топлива самых современных паротурбинных энергетических установок не превышает 40%. Для топливных элементов нет термодинамического ограничения коэффициента использования энергии. В существующих топливных элементах от 60 до 70% энергии топлива непосредственно превращается в электричество, и энергетические установки на топливных элементах, использующие водород из углеводородного топлива, проектируются на КПД 40–45%.

Работа системы питания

От зубчатых колес газораспределения приводится в действие вал топливного насоса 19 высокого давления, который, в свою очередь, приводит в действие топливоподкачивающий насос 20.

В результате из бака 2 по трубкам 23 и 21 через фильтр 22 грубой очистки топливо засасывается в полость подкачивающего насоса 20,откуда по топливопроводам 6 и 10 через фильтр 7 тонкой очистки подается к ТНВД 19, с помощью которого топливо не только подается под высоким давлением к форсункам, но и дозируется соответственно с нагрузкой двигателя.

Поступающее из ТНВД по топливопроводу 15 высокого давления топливо через форсунку 17 впрыскивается в цилиндр.

Впускная полость ТНВД снабжена перепускным клапаном 13, поддерживающим в ней давление 0,15—0,17 МПа вне зависимости от расхода топлива. Избыточное топливо по трубкам 11 и 4 возвращается в бак. Таким образом, данная система питания является проточной. Часть топлива перепускается также в трубку 4 из фильтра тонкой очистки через калиброванное отверстие, расположенное в штуцере 8.

Непрерывная циркуляция топлива в проточной системе в отличие от тупиковой выравнивает его температуру, освобождает топливную магистраль от возможных пузырьков воздуха и паровых пробок. Топливо, просачивающееся чрез зазоры в форсунках, отводится в бак по трубке 18.

Первоначальное заполнение системы осуществляют ручным насосом 12, который объединен в один узел с подкачивающим насосом 20. Воздух из системы при ее заполнении и в процессе эксплуатации удаляют через отверстия, закрываемые пробками 9 и 14, а отстой из фильтра сливают через отверстие, закрываемое пробкой 5.

Топливо тщательно очищают даже от мельчайших твердых частиц, которые могут повредить рабочие поверхности в насосе и форсунках. Топливо фильтруется не только фильтрами 7 и 22, но и при заливке в бак через сетку 3, установленную в его горловине, а также на входе в топливопровод 23 через сетку топливоприемника / и на входе в форсунку с помощью фильтра, установленного в штуцере 16.


Данную систему питания относят к системам с разделенной топливной аппаратурой. Существует система, в которой насос высокого давления и форсунка объединены в один агрегат и образуют насос-форсунку. Топливопровод высокого давления в этом случае отсутствует. К на-сос-форсункам прибегают при необходимости повысить давление подачи топлива до 100 МПа и более.

Дизельные топлива

В системе питания дизелей используют жидкое топливо, которое получают в результате прямой перегонки нефти при температуре 230—380 °С. Для получения необходимых свойств к топливу прямой перегонки добавляют керосиногазойлевые фракции различных технологических процессов переработки нефти и газовых конденсатов.

В зависимости от условий применения выпускают три марки дизельного топлива:

  • • Л (летнее) — для температуры окружающего воздуха 0 °С и выше;
  • • 3 (зимнее) — для температуры окружающего воздуха минус 20 °С и выше;
  • • А (арктическое) — для температуры окружающего воздуха минус 50 °С и выше.

Эти топлива отличаются между собой фракционным составом, вязкостью, плотностью, температурами застывания, помутнения и другими показателями.

Ввиду особенностей устройства системы питания дизелей топливо для них должно обладать достаточной прокачиваемостью и особенно фильтруемостью.

Дизельное топливо

Дизельное топливо является одним из продуктов переработки нефти. В нем содержатся различные углеводороды (парафины, нафтены, ароматические и др.). Число атомов углерода, входящих в молекулы дизельного топлива, достигает тридцати. Основное качество дизельного топлива — легкость воспламенения при соприкосновении с горячим воздухом. Воспламеняемость топлива характеризуется цетановым числом. Чем выше это число, тем менее стойки к окислению молекулы топлива и легче оно воспламеняется. У дизельного топлива цетановое число составляет 40 — 50 (чаще всего 45).

Важной характеристикой топлива также является его вязкость при различных температурах. Для обеспечения нормальной работы двигателя топливо не должно застывать при низкой температуре (до -60 °С)

Кроме того, необходимо, чтобы топливо не было токсичным, обладало антикоррозионными и смазывающими свойствами, а также не создавало паровые пробки в топливопроводах при температурах до 50 °С.

Для автотракторных дизелей используется топливо марок А (арктическое), 3 (зимнее) и Л (летнее). Наиболее широко распространено топливо марок З (при отрицательной температуре воздуха) и Л (при температурах выше 0 °С).


С этим читают