Устройство осциллографа, его настройка и сферы применения

Как работать с осциллографом

Первоначально выставляются режим работы осциллографа (автоколебательный, ждущий или одиночный). Затем выбирается режим аттенюатора или устанавливается соответствующий делитель напряжения. Это касается аналоговых приборов. Цифровые на входе анализируют сигнал и понижает/повышает его до необходимого уровня. В них на входе стоит аналитический блок, который сам понижает или повышает входной сигнал до требуемого уровня.

Подключение осциллографа

В комплекте с осциллографом идет измерительный шнур или шнуры. Их количество зависит от числа входных каналов конкретной модели. Если канал один, то и шнур один. Может быть два, три и до шестнадцати. Подключать надо столько, сколько собираетесь использовать.


Шнуры для осциллографа трудно спутать с другими. Один конец — со щупом и ответвлением. Это «измерительная» сторона. С другой находится характерный круглый разъем. Эта часть подключается к измерительному входу.

Провод, который идет в сторону от щупа — для подключения к «земле». Он часто бывает снабжен прищепкой или «крокодилом». Его подключать обязательно, вольтаж может быть разный и заземление необходимо.

Измерительные шнуры для осциллографа

Некоторые шнуры для осциллографа имеют на рукоятке переключатель, который работает как небольшой усилитель (на фото справа).

После подключения измерительных шнуров включаем прибор в сеть. Затем, перед работой, переводим в рабочее положение тумблер/кнопку включения прибора. Можно считать что осциллограф готов к работе.

Проверка осциллографа перед работой

Перед началом работы надо проверить осциллограф. Включаем его в сеть, устанавливаем измерительный шнур. К щупу прикасаемся пальцем, на экране появляется синусоида частотой 50 Гц — наводки от бытовой электросети.

Если пальцем прикоснуться к измерительному щупу, на экране появится синусоидальной формы сигнал. Синусоида неидеальна, но если она есть и ее частота 50 Гц, это значит, что осциллограф исправен

Затем берем земляной щуп и прикасаемся им к измерительному (палец продолжаем держать на острие щупа). Сигнал пропадает (отображается прямая). Это значит, что прибор исправен.

Как измерить осциллографом напряжение: переменное, меандра, постоянное

Как уже говорили, напряжение на экране осциллографа отображается по вертикали. Весь экран разбит на квадраты. Цена деления по вертикали выставляется переключателем, который подписан «V/дел». Что и обозначает, Вольт на одно деление

Перед подачей сигнала выставляем луч точно по горизонтальной оси — это важно

Подаем сигнал и считаем, на сколько клеточек от нулевого уровня поднимается или опускается сигнал. Затем умножаем количество клеток на «цену деления», взятую с регулятора. В результате получаем напряжение сигнала. В случае с синусоидой или меандром (положительные и отрицательные прямоугольные импульсы) считается напряжение полуволны — верхней или нижней.

Измерение напряжения осциллографом

Чтобы было понятнее, разберем пример. На фото есть сигнал, полуволна которого понимается и опускается на три клеточки. Цена деления на регуляторе — 5 В. Имеем: 3 дел * 5 V/дел  = 15 V. Получается, данный сигнал имеет напряжение 15 вольт.

Если надо измерить постоянное напряжение, снова выставляем луч по горизонтали. Подаем напряжение и смотрим, на сколько клеток «подпрыгнул» или опустился луч. Дальше все точно так же: умножаем на цену деления и получаем значение постоянного напряжения.

Как осциллографом определить частоту

Частота определяется как 1/T, где Т — период сигнала. А период — это время, за которое сигнал проходит полный цикл. Для сигнала на экране это 5,7 клетки. Считаем от места пересечения с горизонтальной осью и до второй аналогичной точки.

Как определить частоту сигнала по осциллографу

Далее определяем частоту деления по переключателю развертки. Положение переключателя стоит на 50 миллисекунд. Берем количество делений и умножаем на количество клеток. Получаем 50 мс * 5,7 = 285 мс. Переводим в секунды. Для этого надо разделить на 1000. Получаем 0,285 сек. Считаем частоту: 1/0,285 = 3,5 Гц

Устройство

Упрощённая блок-схема осциллографа отображает структурное строение аналогового прибора. Это входной делитель, усилитель горизонтальной развёртки и схема синхронизации, усилитель вертикального отклонения, блок питания и электронно-лучевая трубка.

Блок-схема аналогового осциллографа

Цифровые измерители осциллограмм имеют в своём составе:

  • входной делитель;
  • нормализующий усилитель;
  • аналого-цифровой преобразователь;
  • блок памяти;
  • устройство управления;
  • устройства отображения.

Устройство отображения представляет собой жидкокристаллическую панель чёрно-белого или цветного отображения картинки.

Экран

Способность изображать изменения исследуемых гармонических колебаний – есть основная задача этого прибора. До появления жк-дисплеев эту роль выполняла ЭЛТ. Это стеклянный конусообразный баллон, дно которого покрыто люминофором. Он издаёт видимое свечение при попадании на него электронного луча. На экран нанесена калибровочная сетка с делениями.

Устройство электронно-лучевой трубки

Сигнальные входы

Количество входов прибора обозначает число его каналов. Наличие 2 и более каналов обозначает многоканальный осциллограф. Входные импульсы от каждого канала подаются на Y-вход и усиливаются собственным усилителем вертикальной развёртки.

Важно! Такой усилитель всегда выполнен по схеме усиления постоянного тока. Значит, нижняя граница частоты – 0 Гц

Это даёт возможность измерить постоянное напряжение, отображать несимметричные сигналы и контролировать постоянную составляющую сигнала.

Управление развёрткой


График, который получится в результате подачи напряжения на вертикально расположенные пластины, напоминает зубья пилы. Разность потенциалов нарастает, потом резко падает. При наблюдении за движением луча видно, что он бегает слева направо. Такие пилообразные движения называются вертикальной и горизонтальной развёрткой. Горизонтальную развёртку ещё зовут строчной. Периодичность повторения пилообразных импульсов определяет частоту развёртки.

Синхронизация развёртки с исследуемым сигналом

Эта функция необходима для того, чтобы картинка луча в циклах развёртки была неподвижной. Значит, что при повторении каждого следующего движения по экрану луч должен проходить свой путь по одной и той же траектории. Этим занимается синхронизация развёртки. Она запускает развёртку с заданной точки. При частоте повторения больше 20 Гц, в результате инерционности человеческого зрения, наблюдается неподвижное изображение.

Оперируют всегда с двумя настройками:

  • уровень запуска – по напряжению;
  • тип запуска – по фронту или спаду импульса.

Применительно к работе с цифровыми устройствами запуск развёртки происходит при совпадении заданного двоичного кода с кодом на шине микропроцессора.

Как выполняются измерения

Экран осциллографа поделён на небольшие клетки, которые называются делениями. В зависимости от прибора каждый квадрат будет равен определённому значению. Наиболее популярное обозначение: одно деление – 5 единиц. Также на некоторых приборах присутствует ручка для управления масштабом графика, чтобы пользователям было удобнее и точнее производить измерения.

Прежде чем начать измерение любого рода следует присоединить осциллограф к электрической цепи. Щуп подключается на любой из свободных каналов (если в приборе, больше чем 1 канал) или на генератор импульсов, при его наличии в устройстве. После подключения на дисплее аппарата появятся различные изображения сигналов.

Если сигнал получаемый прибором обрывистый, то проблема заключается в присоединении щупа. Некоторые из них оборудованы миниатюрными винтами, которые необходимо закрутить. Также в цифровых осциллографах решает проблему обрывистого сигнала фикция автоматического позиционирования.

Watch this video on YouTube

Измерение тока

При измерении тока цифровым осциллографом, следует узнать какой вид тока необходимо наблюдать. Осциллографы имеют два режима работы:

  • Direct Current («DC») для постоянного тока;
  • Alternating Current («АС») для переменного.

Постоянный ток измеряется при включённом режиме «Direct Current». Щупы аппарата следует подключить к блоку питания в прямом соответствии с полюсами. Чёрный крокодил присоединяется к минусу, красный — к плюсу.

На экране устройства появится прямая линия. Значение вертикальной оси будет соответствовать параметру постоянного напряжения. Силу тока можно вычислить согласно закону Ома (напряжение поделить на сопротивление).

Переменный ток представляет собой синусоиду, из-за того, что напряжение также переменно. Поэтому измерить его значение можно только в определённый промежуток времени. Параметр также вычисляется при помощи закона Ома.

Измерение напряжения

Чтобы измерить напряжение сигнала понадобится вертикальная ось координат линейного двухмерного графика

Из-за этого всё внимание будет уделено высоте осциллограммы. Поэтому перед началом наблюдения следует настроить экран более удобно для измерения

Затем переводим аппарат в режим DC. Присоединяем щупы к цепи и наблюдаем результат. На дисплее аппарата появится прямая линия, значение которой будет соответствовать напряжению электрического сигнала.

Watch this video on YouTube

Измерение частоты

Прежде чем, понять, как измерить частоту электрического сигнала, следует узнать, что такое период, так как эти два понятия взаимосвязаны. Один период – это наименьший промежуток времени, через который амплитуда начинает повторяться.

Увидеть период на осциллографе легче при помощи горизонтальной оси координат времени. Нужно лишь заметить, через какой промежуток времени линейный график начинает повторять свой рисунок. Началом периода лучше считать точки соприкосновения с горизонтальной осью, а концом повторения этой же координаты.

Чтобы удобнее измерить период сигнала, скорость развёртки уменьшают. В таком случае погрешность измерения не так высока.

Частота — это значение обратно пропорционально анализируемому периоду. То есть, чтобы измерить значение, нужно одну секунду времени поделить на количество периодов, происходящих за этот промежуток. Полученная частота измеряется в Герцах, стандарт для России — 50 Гц.

Измерение сдвига фаз

Сдвигом фазы считают — взаимное расположение двух колебательных процессов во времени. Параметр измеряется в долях периода сигнала, чтобы независимо от характера периода и частоты, одинаковые сдвиги фаз имели общее значение.

Первое что необходимо сделать перед измерением: выяснить какой из сигналов отстаёт от другого и затем определить значение знака параметра. Если ток идёт впереди, то параметр сдвига угла отрицательный. В случае, когда напряжение опережает — знак значения положительный.

Чтобы вычислить градус сдвига фаз следует:

  1. Умножить 360 градусов на число клеток сетки между началами периодов.
  2. Разделить полученный результат на число делений, занимаемых одним периодом сигнала.
  3. Подобрать отрицательный или положительный знак.

Измерять сдвиг фазы в аналоговом осциллографе неудобно, потому что выводящиеся на экраны графики имеют одинаковый цвет и масштаб. Для наблюдений такого рода используют либо цифровое устройство, либо двухканальные аппараты, чтобы разместить разные амплитуды на отдельный канал.

DIS-система зажигания

Высоковольтные импульсы зажигания, генерируемые исправными DIS-катушками зажигания двух различных двигателей (работают на холостом ходу без нагрузки).

DIS-система (Double Ignition System) зажигания имеет особые катушки зажигания. Они отличаются тем, что оснащаются двумя высоковольтными выводами. Один из них подсоединяется к первому из концов вторичной обмотки, второй — ко второму концу вторичной обмотки катушки зажигания. Каждая такая катушка обслуживает два цилиндра.

В связи с описанными особенностями проверка зажигания осциллографом и съем осциллограммы напряжения высоковольтных импульсов зажигания при помощи емкостных DIS-датчиков происходит дифференциально. То есть, получается фактический съем осциллограммы выходного напряжения катушки. Если катушки исправны, то в конце горения должны наблюдаться затухающие колебания.


Для проведения диагностики DIS-системы зажигания по первичному напряжению, необходимо поочередно снять осциллограммы напряжения на первичных обмотках катушек.

Описание рисунка:

Осциллограмма напряжения на вторичной цепи DIS-системы зажигания

  1. Отражение момента начала накопления энергии в катушке зажигания. Он совпадает с моментом открытия силового транзистора.
  2. Отражение зоны перехода коммутатора в режим ограничения тока в первичной обмотке катушки зажигания на уровне 6…8 А. Современные DIS-системы имеют коммутаторы без режима ограничения тока, поэтому зона высоковольтного импульса отсутствует.
  3. Пробой искрового промежутка между электродами обслуживаемых катушкой свечей зажигания и начало горения искры. Совпадает по времени с моментом закрытия силового транзистора коммутатора.
  4. Участок горения искры.
  5. Конец горения искры и начало затухающих колебаний.

Описание рисунка:

Осциллограмма напряжения на управляющем выводе DIS катушки зажигания.

  1. Момент открытия силового транзистора коммутатора (начало накопления энергии в магнитном поле катушки зажигания).
  2. Зона перехода коммутатора в режим ограничения тока в первичной цепи по достижении тока в первичной обмотке катушки зажигания, равного 6…8 А. В современных DIS-системах зажигания, коммутаторы не имеют режима ограничения тока, и, соответственно, отсутствует зона 2 на осциллограмме первичного напряжения отсутствует.
  3. Момент закрытия силового транзистора коммутатора (во вторичной цепи при этом возникает пробой искровых промежутков между электродами обслуживаемых катушкой свечей зажигания и начало горения искры).
  4. Отражение горения искры.
  5. Отражение прекращения горения искры и начало затухающих колебаний.

Режим входа

На передней панели имеется специальный переключатель, который переводит прибор в различные состояния. Обозначается символом — сверху прямая черта, ниже нее -волнистая. При переводе в верхнее положение на вход может поступать как переменное, так и постоянное напряжение. Вход открытый считается для постоянного тока. При переключении в нижнее положение допустима подача на вход только переменного напряжения. Благодаря этому появляется возможность проводить замеры очень маленького переменного напряжения (по отношению к очень большим значениям постоянного). Актуально для проведения измерений в усилительных каскадах.

Реализовать это довольно просто – необходимо ко входу усилителя подключить конденсатор. В данном случае вход закрыт

Обратите внимание на то, что в этом режиме измерения НЧ-сигналы с частотой менее 5 Гц ослабевают. Следовательно, измерять их можно лишь в режиме открытого входа

Когда переключатель установлен в среднее положение, то от разъема входа отключается усилитель, и происходит замыкание на корпус. Благодаря этому имеется возможность установить развертку. Так как пользоваться осциллографом С1-49 и аналогами без знания основных органов управления невозможно, стоит о них более подробно поговорить.

Особенности внутреннего устройства

Несмотря на сложное внутреннее оснащение на базе ЭЛТ, прибор с дисплеем может состоять из нескольких составляющих. К ним относятся:

  • Входной стандартный усилитель для наблюдаемых сигналов, чей выход подключается напрямую к пластинам вертикального отклонения.
  • Электронно-лучевая осциллографическая трубка. Широко используется в ряде близких по назначению измерительных приборов.
  • Далее идёт блок горизонтальной развёртки. Однократный тип или периодический сигнал преобразуется в пилообразную форму. Он направляется к пластинам с горизонтальным типом отклонения ЭЛТ. Помимо этого, в период спадающей фазы создаётся импульс гашения электронных лучей, подаваемый на модуляторы ЭЛТ.
  • К вспомогательным или дополнительным частям устройства осциллографа относят калибратор длительности, возможной амплитуды и блок управления яркости.

Экран «А» позволяет чётко отобразить графики каждого поступающего входного сигнала. Цифровые аналоги выводят на цветной или специфический монохромный дисплей желаемое изображение как полностью готовую картинку. Остальные модели используют электронно-лучевую трубку, оснащённую показателями электростатического отклонения. Для таких экранов характерна нанесённая в виде координатной сетки разметка, миссия которой — показывать точное местоположение данных.

Выделяют два базовых типа развёртки: ждущий и автоколебательный, или автоматический. Реже можно встретить модели с дополнительным однократным режимом. Каждый вид имеет свои специфические черты:

Однократный запуск. Характерный механизм запуска — внешнее воздействие. Так, нажатие кнопки и дальнейшее ожидание запуска сходны со ждущим режимом. После запуска развёртывание производится однократно. Повторная развёртка требует ещё одного запуска. Подобная система работы комфортна для изучения функционирования процессов непериодического типа. Недостатком является однократный пробег светящегося пятна по дисплею. Яркость картинки недостаточна, что серьёзно затрудняет процесс наблюдения при быстрой развёртке. Ждущий режим. Недостаточный уровень или отсутствие сигнала вызывает отсутствие развёртки и дальнейшее угасание экрана. Запуск возможен только при достижении сигналами определённого заданного оператором уровня. Возможна настройка запуска как по падающему, так и по нарастающему сигнальному фронту

Важно отметить, что при изучении непериодических типов импульсных процессов такая система гарантирует зрительную неподвижность картинки на экране. Зачастую развёртывание запускается синхронным, несколько опережающим процесс наблюдения сигналом. Автоматическое развёртывание

В этом случае генератор функционирует в автоколебательном типе режима. Благодаря этому даже при отсутствии сигнала в момент окончания цикла произойдёт очередной момент её запуска. Это делает возможным наблюдение изображения на экране даже в ситуации подачи на входе вертикального типа отклонения постоянного напряжения или отсутствия сигнала. Подобный режим характеризуется особым захватом частоты генератора развёртывания наблюдаемым сигналом. Важно, что частота генераторов при этом в целое количество раз меньше частоты исследуемых сигналов.

Как пользоваться осциллографом

Наконец, после изучения функций, измерений и типов осциллографа, как на самом деле работает осциллограф?

Шаг 1: Включите осциллограф

  • Во-первых, вам, конечно, придется включить осциллограф, прежде чем что-либо еще. Для этого просто нажмите переключатель, который часто обозначается как «Питание» или «Линия».
  • Если к осциллографу ничего не подключено, на дисплее должна появиться плоская линия. (это означает, что напряжение на входе не меняется со временем »
  • На этом этапе не забудьте также подключить ваши датчики к устройству.

Шаг 2. Подключение к колеблющемуся сигналу

  • Для этого шага вам понадобится постоянный сигнал постоянной частоты.
    • Большинство областей уже будут иметь встроенный генератор частоты, чтобы излучать надежную волну заданной частоты. (Установите его на импульсную или прямоугольную волну с амплитудой 2,5 В при 500 Гц)
    • Если у вас нет генератора сигналов, вы можете загрузить код в Arduino для генерации сигнала.

Шаг 3: Триггер

Как только вы подключитесь к сигналу через ваши пробники, вы должны начать видеть, как сигнал начинает танцевать на вашем экране. Перемещая горизонтальные и вертикальные системные ручки, вы можете перемещать осциллограмму вокруг экрана. (Если вы поверните регуляторы масштаба по часовой стрелке, он увеличит масштаб вашего сигнала, а если вы повернете его против часовой стрелки, он уменьшит масштаб.) Теперь, если ваша волна на дисплее нестабильна, поверните регулятор уровня триггера

При этом вы увидите, как индикатор уровня триггера перемещается вверх и вниз по дисплею. Обратите внимание, что если триггер выше самого высокого пика вашего сигнала, сигнал станет нестабильным.

Шаг 4: Начните измерения!

  • Теперь вы готовы начать измерения с помощью своего оптического прицела! Для начала я с вами, ребята, расскажу, как измерить амплитуду.
  • Прежде чем мы начнем, что такое амплитуда? Амплитуда волны – это разница между высотой пиков волны и ее равновесием.
  • Например, для измерения амплитуды расстояние между линией равновесия и пиком волны составляет 3,5 вертикальных деления сетки, с вольт / делением при 1 В, 3,5 вертикальных деления сетки = амплитуда волны составляет 3,5 В.

Устройство

Главный узел осциллографа — трубка как у старых телевизоров, электронно-лучевая, осуществляющая визуализацию величин, принимаемых входным делителем, от которого зависят рамки допустимых замеров. Происходит усиление, синхронизация с генератором развертки. Далее, исследуемая величина попадает на оконечный усиливающий узел, на ЭЛТ, затем происходит отображение его онлайн без каких-либо задержек.

Алгоритм, как работает цифровой осциллограф несколько иной: он сначала пропускает сигнал через преобразователь (аналого-цифровой), замеряя его несколько раз в сек. Затем происходит реконструкция и отображение на мониторе. Одновременно данные записываются буферной памятью, есть возможность будущей их обработки.

Работать с цифровым осциллографом удобнее, его преимущества — полная функциональность с дополнительными опциями в маленьком корпусе, простота настроек. Выбор осциллографа в современных условиях обычно осуществляется среди указанных видов. Отдельные аналоговые старые основательные советские экземпляры (дешевле в 4–5 раз) неплохи, но они габаритные, требуют больше навыков по настройке.

Настройка

Для работы с осциллографом предварительно необходимо произвести калибровку его канала (каналов). Калибровка производится после прогрева прибора (примерно минут 5). Калибратор встроен в большинство осциллографов. Для калибровки высокочастотных моделей желательно иметь шнур с двумя разъемами (на выход калибратора и на вход осциллографа) иначе возможны искажения сигнала. Для низкочастотных моделей возможно просто коснуться щупом выхода калибратора. Далее ручка вольт/дел. ставится так, чтобы сигнал калибратора занимал 2—4 деления на экране (то есть, если калибратор 1 вольт,- то на 250 милливольт). После этого канал включается на переменное напряжение и на экране появится сигнал. Далее, в зависимости от частоты калибратора, ручка развёртки ставится в положение при котором видно не менее 5—7 периодов сигнала. Для частоты 1 килогерц частота развёртки, при которой каждый период занимает одно деление экрана, равен 1 мс (одна миллисекунда). Далее необходимо убедиться, чтобы сигнал на протяжении этих 5-7 периодов попадал точно по делениям экрана. Для аналоговых осциллографов нормируется как правило ±4 деления от центра экрана, то есть на протяжении восьми делений должен совпадать точно. Если не совпадает, следует поворачивать ручку плавного изменения развёртки добиваясь совпадения. Заодно проверяется амплитуда (размах) сигнала — она должна совпадать с тем, что написано на калибраторе. Если не совпадает, то необходимо добиться совпадения, поворачивая ручку плавного изменения чувствительности вольт/дел. Необходимо помнить, что если установлена чувствительность канала в 250 милливольт, то сигнал в 1 вольт занимает при правильной настройке 4 деления. После калибровки прибор будет показывать сигнал точно. Теперь можно не только смотреть, но и измерять сигналы.

USB осциллограф

USB-осциллограф представляет из себя прибор, который не имеет собственного экрана.

У нас на обзоре USB осциллограф INTRUSTAR.

В придачу с ним шли 2 щупа, шнур USB, расходники, диск с ПО, а также отвертка для регулировки щупов


С одной стороны осциллографа мы видим два разъема для подключения щупов. Первый разъем CH1, что означает первый канал, а второй разъем CH2, то есть второй канал. Следовательно, осциллограф двухканальный.  Справа видим два штыря. Эти штыри – генератор тестового сигнала для калибровки щупов осциллографа. Один из них земля, а другой – сигнальный. Калибруем точно также, как и простой цифровой осциллограф. Как это делать, я писал выше в статье.

В рабочем состоянии USB осциллограф выглядит вот так.

После установки программного обеспечения на компьютер или ноутбук, открываем программу и запускаем осциллограф. Здесь я уже сразу подцепил тестовый сигнал, чтобы подготовить осциллограф к работе.

Также можно вывести значение сигналов, которые осциллограф сразу бы показывал на экране монитора.

Плюсы и минусы USB осциллографа

Плюсы:

  1. Умеренная цена и функционал. Стоит в разы дешевле, чем крутые цифровые осциллографы
  2. Настройка и установка ПО занимает около 10-15 минут
  3. Удобный интерфейс
  4. Малогабаритный размер
  5. Может производить операции как с постоянным, так и с переменным током
  6. Два канала, то есть можно измерять сразу два сигнала и выводить их на дисплей

Минусы:

  1. Малая частота дискретизации
  2. Обязательно нужен ПК
  3. Малая полоса пропускания
  4. Глубина памяти тоже никакая

Более подробно про характеристики цифровых осциллографов вы можете прочитать, скачав учебное пособие по цифровым осциллографам.

Устройство

Что такое осциллограф, можно выяснить на примере типовой конструкции:

  • вакуумная трубка (ЭЛТ) покрыта изнутри люминофором, который светится при попадании электронных лучей;
  • блок горизонтальной развертки формирует пилообразные сигналы вместе с импульсами «гашения» луча при возврате в исходное положение;
  • усилитель увеличивает амплитуду входного сигнала до необходимого уровня чувствительности ЭЛТ;
  • для синхронизации развертки применяют внутренний генератор тактовой частоты или внешний источник.

Устройство осциллографа

Экран

На картинке выше приведена блок схема осциллографа с электронно-лучевой трубкой. В современных моделях часто применяют дисплеи, созданные с применением технологий жидких кристаллов. Они экономичнее и надежнее, весят меньше. Координатную сетку наносят на прозрачную накладку либо формируют программным способом.

Сигнальные входы

В многолучевых осциллографах сохранен базовый принцип работы, однако сигналы подают на отдельные каналы. В каждом из трактов установлен собственный усилитель. Регулировкой выравнивают амплитуды для удобного сравнения нескольких показателей.

К сведению. При наличии слишком большой постоянной составляющей луч отклоняется за пределы экрана. Чтобы вернуть его в рабочую область, применяют переключение в режим «закрытого» входа с разделительным конденсатором.

Управление развёрткой

В осциллографии применяют следующие виды развертки:

  1. «Автомат» – импульсы генерируются по заданному режиму без дополнительного вмешательства со стороны пользователя.
  2. Ждущий – применяют при малых уровнях (отсутствии) сигнала. Он запускается по определенному уровню фронта (спада). В некоторых случаях используют внешнее управление.
  3. Однократный – активируется принудительно. Его применяют для исследования одиночных сигналов (последовательностей из нескольких импульсов).

Синхронизация развёртки с исследуемым сигналом

Чтобы обеспечить неподвижность «картинки», траекторию движения луча по экрану необходимо согласовать с процессом прохождения сигнала. Задачу решают с помощью запуска развертки по нулевому или другому уровню на входе. Ограничением является порог восприятия частоты человеческим глазом. От 18-22 Гц и выше мерцания не заметны.

К сведению. Отсутствие синхронизации проявляется как движущееся изображение. Ручной настройкой устанавливают запуск по фронту (спаду), выбирают оптимальный уровень для стабилизации.

Применение и интересные факты

Являясь одним из важнейших аппаратов в радиоэлектронике и радиотехнике, он широко используется в лабораторных, прикладных и научно-исследовательских целях. Позволяет изучать, контролировать и измерять параметры электрических сигналов и радиоволн при воздействии разнообразных датчиков. Прибор позволяет:

  1. Определять частоту сигнала по измерению его временных характеристик.
  2. Измерять временные параметры для получения значения амплитуды напряжения.
  3. Выяснить постоянную и переменную классического сигнала.
  4. Изучать сдвиги фаз, происходящие при прохождении различных участков цепи.
  5. Исследовать внутренние механизмы, происходящие в электрической цепи.
  6. Наблюдать частоту колебания и особенности искажения сигнала.
  7. Вычислить соотношение шума и сигнала, стационарность шума и возможные изменения по временным параметрам.
  8. Наладить оперативный и периодический контроль качественных характеристик телевизионного тракта в системе телевещания.

Широко применение осциллографа в диагностике и ремонте автотранспорта. Благодаря своим характеристикам он способен выявить неисправные катализаторы, проверить функционирование исполнительных механизмов, кратко указать основные идентификационные сведения системы, считать код неисправностей, который сохраняет система, отследить изменения сигналов датчиков системы.

Учёными выделено несколько занимательных фактов работы и создания фиксирующего прибора, популярного в электромеханической сфере любого производства. К ним относят:

  • Именно экран одного из осциллографов был использован как дисплей первой видеоигры, визуализирующей игру в теннис. Игра Tennis For Two создавалась на работе аналоговых вычислительных машин. Управление основано на специальном игровом контроллере — Paddle.
  • Радиолюбителями используется тракт записи звука, установленный на звуковой карте компьютера в качестве прибора ввода измерения низких частот.
  • Часто встречается ошибочное написание прибора «осцелограф».
  • Квалифицированные любители радиоэлектроники, не являющиеся чайниками в мире электроники, занялись самостоятельным изготовлением приборов для процесса осциллографирования в качестве приставки к ПК или телевизору. Сейчас эта потребность не так актуальна. Освоенные технологии массового производства подобных товаров имеют низкую себестоимость.

Как подключить отечественный осциллограф

В России иные стандарты, поэтому на приборах отечественного производства все по-другому. Чаще всего используются штекеры диаметром 4 мм. Причем они одинаковые, приходится выяснять некоторые признаки, чтобы не спутать подключение:

  1. Минусовой вывод, как правило, имеет большую длину.
  2. Черный или коричневый цвет характерен для земляного провода.
  3. На земляном штекере нанесены УГО «заземление» или «общий провод».

Но такое можно не всегда встретить, так как кабели часто подвергаются ремонту, во время которого на провод устанавливают штекер, имеющийся в наличии. С вероятностью 100% можно определить, какой провод нулевой, а какой — фазовый, одним способом. Сначала коснитесь рукой одного штекера, затем — другого

И это не зависит от модели, неважно, это осциллограф С1-118А (как пользоваться приборами, рассказано будет ниже) или какой-либо другой

В том случае, если вы будете держать в руке минусовой провод, на экране устройства можно наблюдать ровную горизонтальную линию. А если дотронетесь до фазового провода, то на экране появится искаженная синусоида с огромным количеством помех. Последние наблюдаются по причине того, что имеется некоторая емкость между проводами бытовой электросети в комнате и вашим телом (пространство в помещении – это диэлектрик).

Двухканальный осциллограф

Еще его называют двухлучевым, он обладает одной особенностью – может выдавать на экране сигналы из двух различных источников одновременно. У него есть два канала, которые обозначаются римскими цифрами

Обратите внимание на то, что в обоих каналах минусовые клеммы соединены электрически с корпусом. Поэтому при проведении измерений не допускайте подключения этих проводов к различным участкам цепи

Вот как пользоваться осциллографом С1-68, например, для измерений тока и напряжения одновременно.

Кроме того, есть риск получить неверные сведения, так как цепь кардинально изменяется из-за этого короткого замыкания. Недостаток – это невозможность наблюдения за двумя различными напряжениями. Но он не очень существенный, так как в большинстве приборов один из полюсов (как правило, минусовой вывод источника питания) соединен с корпусом, и он общий. Следовательно, измерения всех напряжений происходят относительно этого общего провода.


С этим читают