Система вентиляции картера двигателя: устройство, принцип работы, основные неисправности

Содержание

Какие бывают неисправности клапана?

Наличие неисправности можно определить по характерным признакам.


  1. Разбрызгивание масла и его увеличенный расход.
  2. Загрязнение фильтра.
  3. Двигатель не запускается на полную мощность или можно услышать тонкий свист двигателя.

Основные неисправности.

  1. Клапан и мембрана – загрязнены.
  2. Вытяжные отверстия и патрубки – загрязнены.
  3. Износилась и расплющилась мембрана.

Картерные газы обычно полностью не освобождаются от масла в маслоочистителе. Все составные части системы – мембраны, патрубки, клапаны загрязняются и забиваются масляной сажей. Если водитель не находит время почистить их, то увеличивается картерное давление. Появляется жесткий запах, гарь и копоть при работающем моторе. Можно заметить, что увеличивается расход масла. Когда клапан выходит из строя, увеличивается давление масла, и оно выталкивается через уплотнения и прокладки.

Износ клапана также характеризуется уменьшение мощности двигателя. В этом случае, давление в системе выхлопа увеличивается или даже останавливается работа ДВС полностью. Если поврежденный клапан полностью не перекрывается мембраной, то кислород, попадая в камеру сгорания, поможет двигателю выйти из строя.

Клапан PCV – особенности конструкции

Ключевая роль клапана PCV в системе закрытой вентиляции картера заключается в функции регулировки давления газов в картере путем их перепуска во впускной коллектор. В режиме ХХ и при торможении двигателем разрежение в коллекторе максимально (дроссель лишь чуть приоткрыт), однако количество картерных газов не так велико, поэтому для полноценной вентиляции достаточно канала с небольшим проходным сечением. В таком режиме под действием большого разрежения золотник клапана полностью втягивается, но при этом канал перепуска картерных газов в значительной степени перекрывается, пропуская лишь небольшое их количество.

При нажатии на педаль акселератора и при высоких нагрузках количество отработавших газов в картере существенно возрастает. Золотник клапана занимает такое положение, чтобы обеспечить максимальную пропускную способность канала. Существует еще и так называемый режим обратной вспышки, при котором горящие газы из цилиндра прорываются во впускной коллектор. В этом случае клапан PCV находится под действием давления, а не разрежения, поэтому полностью закрывается, исключая возможность поджога находящихся в картере паров топлива.

Варианты создания принудительной очистки от картерных газов

Правда не все так просто, как кажется с первого взгляда. Существует два подхода, по которым может быть выполнена принудительная вентиляция картера. Из картера могут выводиться выхлопные газы, а возможно и обратное действие — приток воздуха снаружи.

Вариант, когда система вентиляции построена на притоке свежего воздуха, приведен на рисунке ниже. В этом случае наружный воздух попадает в картер мотора, смешивается с картерным газами, и через специальный клапан PCV поступает обратно в цилиндры мотора. Построенная таким образом система вентиляции, позволяет избежать попадания продуктов работы ДВС в атмосферу. Именно такой подход используется современными автопроизводителями, при проектировании и изготовлении автомобилей.

Непременным атрибутом современного ДВС является вентиляции картера, выполненная чаще всего как закрытая система. Она позволяет повысить надёжность работы мотора и уменьшить отрицательное воздействие выхлопа автомобиля на атмосферу.

Мне нравится1Не нравится

Неисправности клапана, двигателя

Этот узел может нам о многом говорить в частности о неисправности двигателя или клапана рециркуляции. Тема это обширная, поэтому укажу лишь пару важных моментов.

Когда неисправен клапан:

  • Когда его «клинит», и он всегда открыт – то есть выпускной коллектор, вытягивает газы из картера (проявляется разряжение). У вас будет постоянно обедненная смесь, могут появляться ошибки Check Engine, машина будет работать не стабильно (плавать обороты, падать тяга). Если попробовать открутить крышку головки блока на работающем двигателе, снять ее будет сложно, ее как будто будет что-то затягивать
  • Когда его «клинит», и он всегда закрыт – тогда отработка не будет уходить во впуск, внутри будет создаваться избыточное давление. Скорее всего, будет выбивать масляный щуп, крышку головки блока и выкидывать масло.

Когда неисправен двигатель:

Основная причина тут одна, это износ поршневой группы, например колец, стенок блока цилиндров.

При запущенном ДВС, если открутить крышку блока цилиндров, газы будут просто вырываться из горловины. Крышку просто будет выбивать, также может выплескиваться масло, причем обильно каплями, и идти синеватого цвета дым.

Вот такая огромная статья получилась, сейчас подробное видео, смотрим.

НА этом заканчиваю, думаю, моя статья и мое видео были вам полезны. Искренне ваш АВТОБЛОГГЕР.

Способы проверки картерных газов

Необходимо открыть крышку на капоте и отвернуть крышку маслозаливной горловины, но не стоит откручивать ее полностью и снимать. Далее нужно завести мотор и посмотреть, что происходит с крышкой:

Если она прыгает, но не слетает, значит есть давление, и газы прорываются. Это нормально.

При разряжении крышку присасывает, это свидетельствует о проблемах с впускным коллектором. В данном случае в картере создается вакуум.

Когда ее сильно подкидывает, такое явление означает, что просели кольца.

Второй способ диагностики — завести двигатель и открыть крышку полностью. Если она слегка присасывается во время снятия, значит вентиляция работает нормально. Когда присасывание слишком слабое, а из горловины выходит дым, это свидетельствует о выходе из строя.

Присасывающаяся слишком сильно крышка также является признаком поломки. Скорее всего, клапан негерметичен, так как повреждена его мембрана. Если при работающем моторе масло брызгает из-под крышки и течет через форсунки, может потребоваться капитальный ремонт. Подобные проблемы обычно встречаются на машинах с большим пробегом и изношенным двигателем.

Третий способ даст результат, если система сильно забита. Нужно завести авто и извлечь щуп. Двигатель считается исправно работающим, когда при затыкании отверстия щупа ощущается легкое всасывание. Если появляется дым, значит механизм неисправен.

Проверка при помощи воздушного шарика

Данная методика используется при заглушенной вентиляции. Необходимо извлечь масляный щуп из трубки. Затем на нее надевают и закрепляют изолентой воздушный шарик или медицинскую перчатку. Можно также надеть его на место заливной пробки, но тогда придется следить, чтобы шар не засосало внутрь.

Далее заводится мотор, на минимальных оборотах в холостом режиме шарик должен слегка надуться и остановиться.


Когда за 5 минут шар почти не увеличивается в размерах или слишком сильно надувается, это значит, что вентиляция засорилась и работает слабо. Возможно, износились поршневые кольца.

Бывает, что шарик при установленных заглушках перестает увеличиваться в размерах. Это означает, что придется разбирать систему и смотреть, какой элемент засорился.

Чтобы проверить работоспособность клапана, при заведенном двигателе с силой зажимают трубку. Если в момент сжатия слышен щелчок, элемент исправен. Другой вариант — держать над клапаном лист бумаги. Листок должен парить в воздухе под воздействием газов. Если положить его над отверстием, он притянется.

Конструкция

В современных автомобилях система вентиляции картерных газов имеет более сложное устройство. Она состоит:

  • Патрубков, шланг;
  • Маслоотделителя;
  • Клапана.

Маслоотделитель

Предназначен для отделения паров масла от газов. Это нужно, чтобы не засорять впускной коллектор, его элементы маслом. Тем более, попадание его в цилиндры во время сгорания топлива ничего хорошего не принесет, нарушается качество топливной смеси и т.д.

Бывают двух типов:

  • Тангенциальный или центробежного типа;
  • Лабиринтовый.

Первый тип имеет форму конуса или цилиндра. Имеет два патрубка вверху и один внизу. В верхней части к маслоотделителю подсоединяются шланги с картера двигателя к одному входному штуцеру. Второй выходной – это выход, к нему крепится шланг, отводящий газы без масляных паров к клапану вентиляции. Нижний патрубок – слив отделенного масла в маслоприемник (картер).

Маслоотделитель системы вентиляции картера центробежного типа

Принцип работы

Картерные газы поступают в маслоотделитель во входной патрубок. В корпусе им задается тангенциальное движение, они закручиваются по спирали относительно центральной оси отделителя. За счет центробежных сил и того, что масло тяжелее газа, первое оседает на стенках прибора. Газы поднимаются вверх и через выходной штуцер идут дальше по системе. Масло стекает вниз, возвращаясь в мотор.

Клапан вентиляции картерных газов

Он нужен для контроля подачи выхлопных газов из картера во впускной коллектор двигателя. Так как там образуется большое разряжение, то через систему патрубков может создаваться вакуум в картере двигателя. Значит, еще больше газов будут пробиваться в картере. Плюс ко всему, вероятность «засосать» пары топлива в картер увеличивается в разы.

Клапан вентиляции картерных газов

Принцип работы

Клапан, в зависимости от нагрузки двигателя, открывается, при маленьком разряжении в коллекторе и закрывается при большом. Давление в картере мотора повышается, клапан приоткрывается. Газы «высасываются» во впуск, снижая давление. Если создается вакуум, то клапан закрывается, перекрывая отсос газов из картера во впускной коллектор. Так регулируется подача выхлопных газов через систему вентиляции картера двигателя, поддерживается небольшое разряжение. Более подробно смотрите на видео:

https://vk.com/video_ext.php

Система рециркуляции картерных газов

Куда же деваются прорвавшиеся газовая смесь? Как правило, по различных каналам (например, там где ходит цепь) они поднимаются наверх в клапанную крышку (могут прямо из картера по шлангам подниматься вверх). И вот тут начинается самое интересное, а именно устройство рециркуляции картерных газов, их можно разделить от условно «старого», до прогрессивно «нового».

Старое устройство. Здесь все было просто «как барабан», из картера двигателя выходила специальная «трубочка» (шланг) иногда даже была просто коробочка на блоках, которая просто соединялась с атмосферой, да – да, они просто выходили в атмосферу. Тогда всем было абсолютно «по боку» на окружающую среду, в машинах не было никаких систем экологии (типа катализаторов и т.д.). Стояли специальные «маслоуловители» (иногда просто лабиринт из мелких каналов, иногда металлическая сетка), которые задерживали масляный туман и возвращали его в виде масла обратно в двигатель.

Первые системы рециркуляции. НО затем народ задумался — что это не правильно и нужно как-то это дело (хотя бы минимально) фильтровать. Поэтому на первых, карбюраторных, для примера ВАЗ 2101 – 2103, картерные газы поднимались по шлангу вверх и выходили к воздушному фильтру карбюратора. Водители той эпохи, помнят круглый воздушный фильтр, который не давал пыли и грязи пройти в карбюратор, все это закрывалось в круглый металлический корпус и закрывалось крышкой.

Инжекторные системы рециркуляции первого поколения. Здесь устройство немного другое, потому что и сама система сильно отличается от карбюраторной. Здесь из клапанной крышки (либо из двигателя), выходил специальный патрубок (сопун), за ним устанавливался маслоуловитель (обычно внутри), к нему присоединялся шланг с одной стороны, который перед дроссельной заслонкой с другой стороны врезался в магистраль подачи воздуха (например, на наших ВАЗ 2110, 2111, 2112 и т.д.)

По сути все тоже самое, эти газы засасывались вместе с новым воздухом и попадали внутрь двигателя.

Единственной проблемой было то, что дроссельная заслонка, относительно быстро загрязнялась потому, как эта газовая смесь несет немного масляного тумана, поэтому каждые 50 – 60 000 км было желательно ее чистить.

Современные системы рециркуляции. Сейчас системы более продвинутые, здесь картерные газы также поднимаются по специальным каналам, либо из головки блока, либо из самого блока двигателя. И через специальные клапана (например клапан рециркуляции), заходят во впускной коллектор или канал подачи воздуха. Однако сейчас подача идет, почти всегда, после дроссельной заслонки

Схемы модернизаций системы вентиляции картерных газов

Схемы доработки системы вентиляции картерных газов, а также описание предоставлены IgorRV.

Для автомобилей LADA с МКПП и АМТ («робот») подойдет схема №1 «Схема вентиляции картерных газов с PCV клапаном для Е-ГАЗ и тросовым дросселем»:

Необходимо установить клапан PCV (артикул 94580183, цена около 400 рублей) от иномарки в малый контур вентиляции картера. При подключении клапана PCV в малый контур на Е-ГАЗе используйте новый шланг (бензомаслостойкий 8 мм без тканевой армировки). На тросовом дросселе подключайте в ресивер, не в дроссель.

В результате клапан будут перекрывать контуры в переходных режимах, что позволит:

  • Принимать нагрузку без рывков и просадки оборотов двигателя (например, при работающем компрессоре, обогреве стекол, сидений и т.д.).
  • Уменьшить вибронагрузку на холостом ходу
  • Увеличить тягу с низов (отмечено владельцами АКПП с двигателем ВАЗ-21126, МКПП с ВАЗ-21227, 21126 и 11186 и АМТ с ВАЗ-21127).
  • Получить более резкую реакцию на педаль газа и более быстрые переключения (на АМТ). Возможно из-за того, что клапан не дает двигателю сбрасывать обороты поддерживая более оптимальный алгоритм переключений.
  • Снизить расход масла через вентиляцию.

Срок замены клапана — 40 000 км пробега.

Для автомобилей LADA с АКПП (Jatco) и АМТ («робот») подойдет схема №2:

Описание схемы №2: Редукционный клапан подключается последовательно в большой круг вентиляции. Тем самым он регулирует поток картерных газов на повышенных оборотах и в переходных процессах. Это позволяет:

  • Осуществлять полный контроль за потоками картерных газов между малым и большим контуром.
  • Улучшить режим работы двигателя.
  • Снизить вибронагруженность.
  • Снизить выброс масла в вентиляцию.

Для автомобилей LADA с АКПП (Jatco) и АМТ («робот») подойдет схема №3:

Описание схемы №3: Для улучшения работы тормозной системы, облегчения процесса удержания машины на тормозах в режиме «D», применен «Эжекционный насос». За счет потока картерных газов, от малого контура, происходит усиление разряжения в трубке идущей к вакуумному усилителю. Происходит это на малых оборотах, что очень помогает при езде по пробкам. Постоянно держать ногу на тормозе не очень легко, а этот насос задачу облегчает.

  • Избавление от вибраций, провалов, трансмиссионных ударов.
  • Двигатель начинает работать более спокойно, мягко.
  • Усилие на педали тормоза становится меньше.
  • Кондиционер включается почти незаметно.

Потребуется:

  • эжекционный насос (артикул 10793 VIKA, цена 546 рублей);
  • редукционный клапан (артикул 1117701500 JP GROUP, 422 рубля);
  • клапан PCV (артикул 94580183 GENERAL MOTORS, 400 рублей);
  • хомуты (около 10 штук, 600 рублей);
  • тонкий, бензостойкий 8 мм шланг 50 см (100 рублей);
  • стандартный патрубок вентиляции.

Пример установки на видео:

Кстати, есть и другие способы доработать систему вентиляции картера. А вы готовы к таким модернизациям? Напомним, среди владельцев автомобилей ЛАДА также распространена доработка системы зажигания (установка в жгут катушек зажигания конденсаторов).

Ключевые слова: двигатель lada xray | двигатель лада веста | двигатель лада ларгус | двигатель лада гранта | двигатель лада калина | двигатель лада приора | двигатель нива | универсальная статья

12 1

Обнаружили ошибку? Выделите ее и нажмите Ctrl+Enter..

Конструкция вентиляционной системы картера

На разных моторах, которые производятся различными производителями, описываемая система характеризуется собственной конструкцией. При этом в каждой из таких систем в любом случае имеется несколько общих компонентов. К ним относят:

  • клапан вентиляции;
  • маслоотделитель;
  • воздушные патрубки.

Клапан необходим для корректирования давления газов, которые заходят во впускной коллектор. Если их разрежение является существенным, клапан переходит в закрытый режим, если несущественным – в открытый.

Маслоотделитель, которым располагает система, снижает явление формирования сажи в камере сгорания за счет того, что не позволяет масляным парам проникать в нее. От газов масло может отделяться по двум схемам:

  • циклической;
  • лабиринтной.

В первом случае говорят о маслоотделителе центробежного вида. Такая система предполагает, что газы вращаются в ней, и это приводит к оседанию масла на стенках устройства, а затем и его стеканию в картер. А вот лабиринтный механизм действует иначе. В нем картерные газы замедляют свое движение, благодаря чему и происходит осаждение масла.

Двигатели внутреннего сгорания наших дней, как правило, оснащаются комбинированными системами отделения масла. В них лабиринтное устройство монтируется после циклического. Это обеспечивает отсутствие турбулентности газов. Подобная система на данный момент без преувеличений идеальна.

Вентиляция картерных газов авто семейства Ауди/ Фольксваген

СВКГ на многих автомобилях Фольксваген, Ауди, а также Seat и Skoda, устроена относительно сложно, так как имеет целую систему пластмассовых и резиновых патрубков. В процессе эксплуатации двигателя шланги в системе со временем закоксовываются, и тогда требуется чистка всех элементов вентиляции. Некоторые автовладельцы машин, не находя времени и желания на прочистку системы, раньше решали проблему просто – в обход штатной СВКГ на клапанной крышке устанавливали шланг и выводили газы в атмосферу.

У этого способа есть большие минусы:

  • газы загрязняют окружающую среду;
  • водителю и пассажирам в салоне приходится самим дышать вредным выхлопом, так как трубка выводится под капот.

На современных моторах VAG уже трубки отвода никто не устанавливает, и в случае засорения системы автовладельцы производят прочистку. Рассмотрим СВКГ на примере турбированного 4-цилиндрового двигателя AEG 2.0 л, работающего на бензиновом топливе.

Картерные газы на моторе VAG отводятся не сверху, с клапанной крышки, как сконструировано на многих ДВС, а с блока цилиндров (БЦ). На отверстии, расположенном с правой стороны БЦ, устанавливается маслоотделитель.

Какую функцию выполняет маслоотделитель, можно понять из названия – это устройство не позволяет подниматься маслу по трубкам в систему вентиляции. В СВКГ проходят только газовые пары, сама смазка остается в масляной системе. Чтобы масло не текло, между маслоотделителем и блоком устанавливаются уплотнительные прокладки.

К маслоотделителю крепится пластмассовая трубка, между шлангом и трубкой располагается тройник, в нем

устанавливается КВКГ.

Клапан имеет три режима работы, на холостых и больших оборотах он закрывается, в открытом состоянии находится при средних оборотах ДВС. Исправный КВКГ продувается только в одну сторону. На другом конце шланга крепится эжекционный насос, который усиливает разрежение в системе.

Эжекционный насос соединяется с выпускным коллектором, а от тройника еще отходит металлическая трубка, которая ведет к редукционному клапану.

Редукционный клапан (РК) работает приблизительно по тому же принципу, что и КВКГ, только он перекрывает более широкий канал. Проверяется РК также с помощью продувания – если из бокового отверстия при полностью закрытом нижнем канале воздух проходит, это означает, что РК неисправен.

Неисправности в системе вентиляции картерных газов

Все неисправности в СВКГ можно разделить на два типа:

  • выход из строя самого клапана вентиляции КГ;
  • засорение (закоксовывание) шлангов системы.

Частая причина возникновения неполадок в этой системе – износ деталей цилиндро-поршневой группы ДВС. Если в цилиндрах слабая компрессия, а маслосъемные поршневые кольца не «держат» масло, создается повышенное картерное давление, и система вентиляции перестает справляться с отводом КГ. Масло и копоть забивает шланги, нарушается целостность мембраны PCV.

Когда забиваются патрубки СВКГ, картерные газы прорываются через все возможные соединения в двигателе, именно поэтому выдавливает прокладки, начинают течь сальники.

Принцип работы клапана вентиляции картерных газов – как работает

Проверка вашего клапана PCV

К сожалению, многие производители автомобилей не являются строгими в обслуживании системы PCV. Некоторые предлагают обслуживать систему каждые 20 000 или 50 000 миль (50-100 тысяч км.) Тем не менее, более частая проверка системы помогает предотвратить дорогостоящий ремонт и обеспечить бесперебойную работу двигателя.


Чтобы начать проверку системы PCV в вашем автомобиле, сначала найдите клапан вентиляции картерных газов и связанные с ним компоненты. В зависимости от вашей конкретной модели вы можете найти клапан на резиновой втулке на крышке клапана; на вентиляционном отверстии вокруг впускного коллектора; или ближе к одной стороне блока двигателя.

Имейте в виду, что некоторые новые модели вообще не имеют PCV; вместо этого вы найдете простой вакуумный шланг, идущий от крышки клапана до воздуховода. Другие могут иметь простой ограничитель на месте. Тем не менее, вы можете проверить ограничитель, шланги и другие компоненты.

Если вы не знакомы с системой PCV в своем автомобиле или не можете найти его, купите руководство по обслуживанию для конкретной марки и модели автомобиля в местном магазине автозапчастей. Руководство по послепродажному обслуживанию стоит около 20 долларов США и содержит инструкции для многих простых задач по техническому обслуживанию и ремонту. Если вы не хотите покупать копию прямо сейчас, поищите руководство в интернет.

К счастью, проверка системы не занимает много времени.

Проверьте детали системы PCV. Резиновые компоненты, такие как прокладки, уплотнительные кольца и шланги, разбухают, становятся твердыми и ломкими после постоянного воздействия высоких температур. Они начинают течь. При необходимости замените один или несколько из этих компонентов. Осторожно отсоедините клапан и все шланги системы и осмотрите их. Если вы обнаружили, что шланги заполнены слизью, очистите их растворителем для лака и замените. Многие модели двигателей используют простой недорогой клапан, и многие автовладельцы просто заменяют его через каждый интервал обслуживания

Другие  включают в себя нагревательные элементы и стоят дороже. Независимо от типа  PCV, который используется в вашем двигателе, всегда покупайте качественный, так как с большей вероятностью будет возможна более точная калибровка для конкретной модели двигателя. На некоторых двигателях вы найдете сетчатый фильтр под клапаном. Некоторые производители автомобилей рекомендуют заменять фильтр каждые 30 000 миль или около того. Большинство  PCV содержат подпружиненное устройство. Как только вы удалите клапан, встряхните его рукой. Вы услышите погремушку. Если вы этого не слышите, пришло время заменить клапан.

Некоторые транспортные средства, включая некоторые старые модели Ford Escort, оснащены небольшим полым пластиковым блоком без движущихся частей. Если у вас есть клапан такого типа, просто очистите его лаковым растворителем, если необходимо, и переустановите.

Схема штатной системы вентиляции картерных газов

Система вентиляции картерных газов двигателей ВАЗ состоит из двух контуров, которые работают на разных режимах нагрузки и оборотах:

  • Малый контур вентиляции подключен к клапанной крышке и впускному коллектору (в за дроссельном пространстве). Данная схема подключения обеспечивает интенсивную вентиляцию картера за счет разряжения, возникающего во впускном коллекторе, при закрытом дросселе. Чтобы не возникало такого эффекта, как гипервентиляция, сечение малого контура ограничивается жиклером в корпусе тросового дросселя, диаметром 1,7 миллиметров. Данный контур работает в районе 800-1500 оборотов.
  • Большой контур вентиляции подключен к клапанной крышке и воздушному патрубку (в пред дроссельном пространстве). Такая схема обеспечивает интенсивную вентиляцию картера на повышенных оборотах. Сечение большого контура 16-18 миллиметров

Примеры, демонстрирующие недостатки штатной системы вентиляции картерных газов:

  • Автомобиль спускается с горки с включенной передачей. В таком режим двигатель работает на повышенных оборотах при сниженной нагрузке. В картере создается высокое разряжение, и подключается большой контур вентиляции, в котором нет никаких регулирующих клапанов. Так как оба контура подключены в один объем маслоуловителя, то сильное разряжение в картере затянет свежую порцию воздуха в обход дросселя. ДМРВ покажет увеличенный расход воздуха, а ЭБУ попытается прикрыть дроссель. Поняв, что это не возможно (он и так закрыт), последует коррекция обедненной смеси увеличением подачи топлива (увеличится расход топлива). В результате весь внутренний объем двигателя будет работать, как параллельный ресивер, весьма значительного объема, подключенный к впуску в обход дросселя. Именно этот объем и будет мешать качественному смеси образованию.
  • Автомобиль в пробке едет в натяг с дополнительными потребителями (например, включенном кондиционере). Муфта компрессора подключается, нагрузка возрастает скачкообразно. Воздуха двигателю не хватает, он его начинает тянуть из картера в обход дросселя. Но ЭБУ, также в курсе включения муфты и также подает больше воздуха, открывая дроссель. Разряжение резко падает, вакуумному усилителю тормозов (ВУТ) не хватает сил удержать машину. Рывок вперед. ЭБУ видит увеличение кислорода, перекрывают дроссель. Резкий рост разряжения, ВУТ схватывает. Машина дергается, удар по трансмиссии. И так до бесконечности.

В результате в обоих случаях при работе двигателя происходят скачки оборотов, мотор захлебывается от нагрузки. Возможны рывки и вибрация на МКПП, АКПП и АМТ. Для устранения этих недостатков предлагается доработать конструкцию по одной из представленных схем.

Замена КВКГ

Заменить клапан несложно практически на любом легковом автомобиле, но у каждой модели двигателя СВКГ имеет свои конструктивные особенности. Рассмотрим для примера, как меняется КВКГ на моторе М54 В22, марка машины – BMW пятой серии в кузове E39. Клапан КВКГ находится под впускным коллектором спереди ДВС, и чтобы до него добраться, необходимо снимать:

  • электронную дроссельную заслонку;
  • регулятор холостого хода.

Для удобства можно снять и сам впускной коллектор, но тогда работа получается достаточно трудоемкой, к тому же придется приобретать коллекторные прокладки. После того, как доступ к клапану обеспечен, отсоединяем от КВКГ шланги и демонтируем само устройство. Производим установку нового механизма, устанавливаем все детали на свои места.

Последствия неисправной вентиляции картера

Последствия высокого давления в картерном пространстве:

  1. Нарушение резиновых уплотнений коленчатого и распределительного вала. Через выдавленные сальники двигатель будет терять масло. Если вовремя не заметить резкое снижение уровня, масляное голодание может привести к износу трущихся пар, провороту вкладышей.
  2. Поломка турбины. После смазывания и охлаждения деталей турбокомпрессора масло самотеком должно сливаться в поддон. Если в картерном пространстве будет подпор газов (своеобразная пробка), объем моторного масла, прокачиваемого через турбину, резко снизится. Из-за ухудшения теплоотвода масло начнет коксоваться внутри каналов и на раскаленных трущихся парах. Последствие – задиры на вкладышах и валу турбины, что равнозначно глубокой реставрации либо замене картриджа/турбокомпрессора в сборе.
  3. Выдавливание щупа и забрызгивание маслом подкапотного пространства. В некоторых случаях щуп вылетает с такой силой, что оставляет заметную вмятину на капоте. В таком случае только мойкой подкапотного пространства не отделаться.

Что такое клапан рециркуляции картерных газов?

Появился он только на современных системах, и это реально полезное изобретение.

Как я писал выше первые поколения инжекторных систем, у которых картерные газы поднимались перед дросселем бала далеко от совершенства. Почему? ДА просто потому что, и дроссель и датчики расходомера и температуры воздуха, постоянно загрязнялись, на них образовывались нагар, масляная пленка и т.д. Через определенный интервал все это приводило к нестабильной работе двигателя, их нужно было постоянно чистить.

Следующее поколение такой системы исправили много ошибок:

Во-первых, сейчас газы подводятся после дроссельной заслонки. Что снижает загрязнение, как самого дросселя, так и датчиков.

Во-вторых, разряжение впускного коллектора нивелируется клапаном рециркуляции картерных газов.

Именно клапан все это предотвращает. Немного об устройстве.

У клапана есть две камеры — низкого и высокого давления. Через обе камеры проходит шток, который с одной стороны крепится к мембране, с другой стороны запирает камеру низкого давления.

Камера высокого давления связана напрямую с картером двигателя (есть один канал). Когда картерные газы начинают повышать давление, тогда мембрана отгибается и открывает камеру низкого давления (открывается второй канал), по сути, открывается прямой доступ до впускного коллектора, который высасывает всю «отработку» из картера.

После того как давление ушло, упало в камере высокого давления, тогда мембрана возвращается на свое место, закрывая камеру низкого давления.

Таким образом, постоянно, поддерживается нужное давление в картере (чуть ниже 1 АТМ), во впускном коллекторе и т.д.

Конечно, понять, не так просто, но подробнее будет в видео.

Устройство и принцип работы системы вентиляции картера

Данная система состоит из множества узлов, основными из которых являются: специальный клапан с редукционным приводом, система различных шлангов и трубок, клапан для создания принудительной вентиляции и устройство, предназначенное для маслоотделения.

Самым основным элементом можно назвать устройство для маслоотделения. Оно располагается в самой верхней части картера и представляет собой полый короб, в котором одна стенка выполнена в виде решетки, которая согнута на 30 градусов. В нижней части картера устанавливается маслоотражатель. Последний нужен для того, чтобы отсеивать масло от газов, которое тоже будет стремиться попасть в систему вентиляции. Вверху маслоотделителя устанавливается штуцер, идущий в трубопровод системы вентиляции.

Далее идет самый основной компонент системы – это клапан принудительной вентиляции. Сам клапан имеет в своем составе два цилиндра и пружину с поршнем внутри. Так как принудительная вентиляция может происходить только при создании определенного разрежения внутри системы, то и положение поршня должно быть разным. Поэтому в клапане предусмотрено три положения, которые определяют основные режимы работы клапана.

  • Положение А. Источник, создающий разряжение имеет очень низкое давление. Соответственно, такое давление недопустимо для работы клапана и он под действием появившейся силы, преодолевая действие пружины, закрывается.
  • Положение Б. В этом случае разряжение довольно высокое, соответственно и давление газов тоже становится большим. Такой режим работы становится не нормальным, а соответственно и клапан под действием пружины также запирается. Такое бывает при повышении оборотов двигателя или применении турбокомпрессоров для ускоренной закачки больших объемов воздуха в цилиндры.
  • Положение А и Б. Для создания такого режима, источник разряжение должен создать оптимальное давление для жесткости пружины клапана. В этом случае, она смещает поршень в промежуточное положение и, таким образом, открывает клапан.

Основой для работы клапана вентиляции картера является обыкновенная разность между давлением за дроссельной заслонкой и после нее. Соответственно, перепад давлений может замеряться и возле турбокомпрессора. Однако, если с обычным мотором все понятно, то с турбированным возникают определенные трудности. Дело в том, что разность давлений в этом слишком высока, что потребует дополнительной регулировки. Для этой цели конструкторы разработали специальный редукционный клапан.

Редукционный клапан в своем составе имеет: диафрагму из специальной маслостойкой резины, колодец из металла, в котором имеются два отверстия, и пружину. Если давление, которое создается у источника разряжения, находится на нормальном уровне, то пружина распрямляется и поднимает диафрагму, открывая, при этом, клапан основного отверстия, давая проход для картерных газов.

В том случае, если же давление будет слишком низким, то диафрагма будет смещаться вниз и заставит пружину сжаться. Клапан основного клапана закроется, но при этом, откроется клапан второго отверстия с меньшим сечением. Картерные газы будут проходить именно через него.

Для обеспечения наиболее плавного хода диафрагмы применяется третий клапан, который установлен сверху корпуса клапана. Таким образом, достигается регулировка давления, воспринимаемого пружинами системы вентиляции.

Редукционный клапан помогает производить вентиляцию не только картера, но и блока цилиндров в целом. Это связано с его возможностью использоваться при повышенных нагрузках двигателя, когда давление увеличивается прямопропорционально.


С этим читают