Система распределенного впрыска kе-jetronic

Содержание

Введение

Автомобили с системой впрыска KE-jetronic выпускались с 1982 по 1993 год такими известными фирмами, как Mercedes, Ford, AUDI, Volkswagen. Подобные машины достаточно широко распространены и в России. Вследствие того, что производитель и разработчик KE-jetronic фирма Bosch давала гарантию на свои компоненты на 8 лет, даже самые свежие автомобили с этой системой имеют проблемы с впрыском. KE-jetronic является механическим системой впрыска с электронной коррекцией. Поэтому для правильного понимания работы КЕ необходимо в первую очередь разобраться с механической частью, а именно с давлениями топлива в разных частях дозатора и иметь начальное представление о теории регулирования. КЕ настраивается в первую очередь по гидравлике, а электронные регулировки лишь уточняют работу дозатора, но никак наоборот. По мнению автора, подавляющее большинство ремонтников слишком увлекаются электроникой, «накручивая» регулировки дозатора и доводя его порой до полной неработоспособности. Можно смело сказать, что специалистов, умеющих чинить KE, единицы, что создает большие проблемы для владельцев. Доказательством этому служит то, что на момент написания пособия количество просмотров в Интернете темы о ремонте КЕ на одном форуме Audi-club составило 50000! Скорее всего, причина этого в том, что отсутствует информация о работе механики впрыска. Для восполнения этого пробела предназначена эта работа. Подразумевается, что читатель имеет начальное представление об устройстве дозатора.

Принцип действия системы впрыска «L-Jetronic»

Электрический топливный насос 2 забирает топливо из бака 1, (рис. 1) и подает его под давлением 2,5 кгс/см2 через фильтр тонкой очистки 3 к распределительной магистрали 5, соединенной шлангами с рабочими форсунками цилиндров 8. Установленный с торца распределительной магистрали 5, регулятор давления топлива в системе 4 поддерживает постоянное давление впрыска и осуществляет слив излишнего топлива в бак. Этим обеспечивается циркуляция топлива в системе и исключается образование паровых пробок.

Количество впрыскиваемого топлива определяется электронным блоком управления 10 в зависимости от температуры, давления и объема поступающего воздуха, частоты вращения коленчатого вала и нагрузки двигателя, а также от температуры охлаждающей жидкости. Основным параметром, определяющим дозировку топлива, является объем всасываемого воздуха, измеряемый расходомером воздуха. Поступающий воздушный поток отклоняет напорную измерительную заслонку расходомера воздуха, преодолевая усилие пружины, на определенный угол, который преобразуется в электрическое напряжение посредством потенциометра. Соответствующий электрический сигнал передается на блок электронного управления, который определяет необходимое количество топлива в данный момент работы двигателя и выдает на электромагнитные клапаны рабочих форсунок импульсы времени подачи топлива.

Независимо от положения впускных клапанов, форсунки впрыскивают топливо за один или два оборота коленчатого вала двигателя (за цикл, за два такта). Если впускной клапан в момент впрыска закрыт, топливо накапливается в пространстве перед клапаном и поступает в цилиндр при следующем его открытии одновременно с воздухом.


Рис. 1. Схема системы впрыска топлива «L-Jetronic»:1 топливный бак, 2 топливный насос, 3 фильтр тонкой очистки топлива, 4 регулятор давления топлива в системе, 5 распределительная магистраль, 6 пусковая форсунка, 7 блок цилиндров двигателя, 8 форсунка (инжектор) впрыска, 9 датчик температуры охлаждающей жидкости, 10 электронный блок управления, 11 блок реле, 12 датчик-распределитель зажигания, 13 выключатель положения дроссельной заслонки, 14 высотный корректор, 15 расходомер воздуха, 16 подвод воздуха, 17 термореле, 18 винт качества (состава) смеси на холостом ходу, 19 клапан добавочного воздуха, 20 винт количества смеси на холостом ходу, 21 выключатель зажигания, 22 подвод разрежения к регулятору давления топлива в системе.

Рис. 2. Функциональная схема управления системой впрыска «L-Jetronic»:А устройство входных параметров: 1 датчик температуры всасываемого воздуха, 2 расходомер воздуха, 3 выключатель положения дроссельной заслонки, 4 высотный корректор, 5 датчик-распределитель зажигания, 6 датчик температуры охлаждающей жидкости, 7 термореле. В устройства управления и обеспечения: 8 электронный блок управления, 9 блок реле, 10 топливный насос, 11 аккумуляторная батарея, 12 выключатель зажигания. С устройства выходных параметров: 13 рабочие форсунки, 14 клапан добавочного воздуха, 15 пусковая форсунка.

Клапан дополнительной подачи воздуха 19, (см. рис. 1), установленный в воздушном канале, выполненном параллельно дроссельной заслонке, подводит к двигателю добавочный воздух при холодном пуске и прогреве двигателя, что приводит к увеличению частоты вращения коленчатого вала. Для ускорения прогрева используются повышенные обороты холостого хода (более 1000 оборотов в минуту).

Для облегчения пуска холодного двигателя, также как и в других рассмотренных системах впрыска, здесь применяется электромагнитная пусковая форсунка 6, продолжительность открытия которой изменяется в зависимости от температуры охлаждающей жидкости (термореле 17).

Функциональную связь всех элементов системы впрыска «L-Jetronic» можно увидеть, обратившись к рис. 2. Величина необходимой в настоящий момент дозы топлива вычисляется электронным блоком управления в зависимости от массы всасываемого воздуха (объем, давление, температура), температуры двигателя и режима его работы.

Начальное (базовое) положение плунжера

При легком нажатии на напорный диск на незаведенном двигателе должен ощущаться свободный ход НД величиной 1-2 мм. Это происходит потому, что существует зазор между плунжером и рычагом расходомера.

Рисунок 14. Расходомер AUDI. Базовые установки

Правильное начальное положение плунжера определяют по величине свободного хода НД.

Если свободный ход НД менее 1 или более 2 мм, начальное положение плунжера надо регулировать перемещением втулки. Вворачивая (выворачивая) винтовую втулку на 0,1 мм, мы увеличиваем (уменьшаем) свободный ход НД примерно на 0,7 мм

Рисунок 15 — Плунжер и гильза в разрезе (упрощенно)

Отсутствие свободного хода НД из-за неправильного начального положения НД (зазор между плунжером и рычагом дозатора равен нулю) приводит к тому, что на незаведенном двигателе НД через рычаг давит на плунжер и поэтому щели гильзы в начальном положении не перекрываются плунжером, топлива будет слишком много и машина не будет заводиться.

Если свободный ход велик, а начальное положение НД правильное, значит, винтовая втулка установлена слишком высоко и щели гильзы в начальном положении также не перекрываются плунжером, топлива будет слишком много и машина не будет заводиться.

Проверить правильность базового (начального) положения плунжера можно, подключив на незаведенной машине принудительно бензонасос и открутив трубки, идущие на форсунки от дозатора. Топливо не должно литься из отверстий дозатора.

Рисунок 16 — Дозатор Mercedes — регулировки

Методика выставления начального положения плунжера от Urgubab’a на Audi (с небольшой коррекцией терминов — diagnost):

«Откручиваем дозатор от расходомера, чтобы можно было добраться до винтовой втулки плунжера. Запускаем принудительно насос. Из каналов дозатора не должно вытекать топливо. Начинаем медленно закручивать винтовую втулку и наблюдать за выходом топлива. Как только уровень топлива в каналах дозатора начнет повышаться, значит, кромка плунжера чуть приоткрыла щель гильзы. Чуть выворачиваем винтовую втулку и проверяем, подключив принудительно бензонасос. Топливо не должно выходить. Но при малейшем нажатии на плунжер, уровень должен повыситься. Можно с подключенными форсунками потом проверить по звуку. При подключении бензонасоса, форсунки не должны пищать».

Рисунок 17 — винтовая втулка регулировки базового положения плунжера (дозатор перевернут)

Рисунок 18 — регулировка базового положения плунжера

Бывают особенно тяжелые случаи, когда дозатор полностью разрегулирован (после вмешательства непрофессионала). Проблема осложняется тем, что на свободный ход НД влияет не только начальное положение плунжера, но и в некоторой степени винт регулировки СО. Двигатель после подобного вмешательства обычно не заводится. В подобном случае в условиях полной неопределенности на AUDI поступают следующим образом.

  1. Демонтируем дозатор и без него устанавливаем начальное положение НД
  2. Выкручиваем (или вкручиваем) винтовую втулку, добиваясь, чтобы винтовая втулка была вровень (заподлицо) с гайкой, крепящей гильзу плунжера (см. ). В этой позиции гарантированно плунжер перекрывает щели гильзы и топливо не потечет через форсунки на незаведенном двигателе.
  3. Отсоединяем дозатор от расходомера
  4. Рычаг расходомера находится в начальном положении. Глубиномером (колумбусом — штангенциркулем) меряем расстояние от ролика рычага расходомера (над ним располагался плунжер дозатора) до плоскости крепления дозатора с тремя отверстиями. Добиваемся, крутя винт регулировки СО, расстояния 22,2-22,4 мм.
  5. При подобных настройках двигатель уже должен заводиться (свободный ход плунжера будет отсутствовать, ведь винтовая втулка слишком выкручена, но это не помешает завестись). Все собираем. Заводим двигатель, разогреваем его и регулируем СО на ХХ винтом регулировки СО.
  6. Осталось добиться свободного хода плунжера. Для этого снимаем дозатор, вкручиваем винтовую втулку на 0,6 мм. При этом свободный ход плунжера будет близок к норме.
  7. Монтируем дозатор, подсоединяем подвод топлива и обратку. Включаем принудительно БН. Меряем свободный ход плунжера. Если необходимо, корректируем величину свободного хода, вворачивая/выворачивая винтовую втулку.

Небольшое изменение начального (базового) положения плунжера не влияет на СО, если свободный ход НД расходомера в допуске при условии правильного выставления начального положения напорного диска.

Функционирование системы при различных режимах работы двигателя

Каждый цилиндр имеет свою форсунку с электромагнитным управлением, впрыскивающую топливо перед впускным клапаном. Впрыск согласован с частотой вращения коленчатого вала двигателя. Информация о частоте вращения передается в электронный блок управления от контакта прерывателя (системы зажигания с контактным управлением), от клеммы «1» катушки зажигания или клеммы «16» коммутатора (для бесконтактных систем зажигания).

Объем проходящего воздуха полностью определяется положением дроссельной заслонки (нагрузкой двигателя). Объем (масса) воздуха измеряется расходомером. Последним не учитывается только воздух, проходящий через обводной канал, который используется для СО-регулирования, (см. рис. 1). О тепловом режиме двигателя дает информацию датчик температуры охлаждающей жидкости.

Информацию о нагрузочном режиме двигателя в блок электронного управления сообщает выключатель положения дроссельной заслонки. Информация состоит из сигналов: «холостой ход», «частичные нагрузки», «полная нагрузка». Если дроссельная заслонка закрыта, двигатель работает на холостом ходу, контакты холостого хода замкнуты и в электронный блок управления идет соответствующий сигнал. Также осуществляется информация о полной нагрузке двигателя, только в этом случае контакты разомкнуты. Сигнал о частичной нагрузке формируется при помощи потенциометра.

Для облегчения холодного пуска смесь обогащается пусковой форсункой. Последняя управляется от выключателя зажигания через термореле, через реле пуска холодного двигателя (послестартовое реле) и термореле. Назначение послестартового реле продлить время работы пусковой форсунки. При прогреве двигателя на холостом ходу подача топлива также увеличивается и в связи с сигналами, поступающими в электронный блок управления от датчика температуры двигателя (охлаждающей жидкости).

В системе «L-Jetronic» учитывается, что плотность холодного воздуха выше плотности теплого. Чем теплее засасываемый воздух, тем хуже наполнение цилиндров при постоянном положении дроссельной заслонки. Температура поступающего воздуха изменяется не только в связи с изменением «наружной» его температуры, но и в связи с изменением «внутренней». Нормальная температура в подкапотном пространстве примерно 50°С. Информация о температуре воздуха поступает от датчика, встроенного в расходомер воздуха, в электронный блок управления, определяющий дозу впрыскиваемого топлива. На части автомобилей устанавливается кроме того высотный корректор, который информирует блок управления о наружном атмосферном давлении.

Большую часть времени двигатель работает в режиме частичных нагрузок, поэтому программа, заложенная в электронный блок управления, обеспечивает минимально возможный расход топлива при приемлемой концентрации вредных веществ в отработавших газах. Топливную экономичность и (или) минимальную токсичность отработавших газов удается получить при использовании лямбда-зондов и нейтрализаторов.

Обогащение смеси происходит при холодном пуске, прогреве, холостом ходе, ускорении движения, полной нагрузке. При всех режимах, кроме последнего, излишек топлива необходим для устойчивой работы двигателя. При холодном двигателе «больше топлива» означает и больше его легкоиспаряющихся фракций. При холостом ходе хуже наполнение, больше остаточных газов. При полной нагрузке «излишек» топлива необходим, для «внутреннего» охлаждения двигателя за счет испарения части топлива.

Система холостого хода «L-Jetronic» дополнена обводным каналом расходомера воздуха (см. рис. 1). В этом канале установлен винт качества (состава) смеси или СО-регулирования. Назначение обводных каналов дроссельной заслонки «L-Jetronic» такое же, как и в системах «K-J», «KE-J».

В режиме принудительного холостого хода дроссельная заслонка закрыта и в блок управления идет сигнал: «холостой ход». Если при этом обороты двигателя выше так называемой восстанавливаемой частоты вращения, впрыск топлива прекращается. Соответственно уменьшается расход топлива и выброс вредных веществ. Восстанавливаемая частота вращения (когда вновь начинается впрыск топлива) обычно лежит в пределах 12001700 об/мин.

Как же KE-Jetronic функционирует?

При пуске и прогреве мотора, оснащенного системой KE-Jetronic, происходит следующее:

  • После включения зажигания, но еще до начала работы стартера, в нижние камеры распределительного дозатора поступает топливо;
  • При достижении рабочего давления и с оглядкой на температуру мотора, ранее открытые каналы перекрываются, а топливо начинает перетекать обратно в бак;
  • В случае с запуском холодного двигателя, срабатывает пусковая форсунка, если же температура более 10оC, то она не работает, но в цилиндры впрыскивается обогащенная смесь. В обмотке датчика давления в этом случае устанавливается соответствующий ток, снижающийся по мере разогрева мотора;
  • В итоге воздушно-топливная смесь очень плавно обедняется до тех пор, пока не окажется нормальной, а температура силовой установки не достигнет 65оC;
  • Управление качеством рабочей смеси на прогретом двигателе осуществляется в рамках заложенной в ЭБУ программы;
  • В дальнейшем основная роль отводится электрогидравлическому задатчику давления, реализующему возможность функционирования мотора в разнообразных режимах движения автомобиля, когда корректировка параметров смеси происходит при поступлении изменяющихся управляющих сигналов со всех датчиков системы.

Интересно отметить, что системы впрыска пошли по пути внедрения вместо непрерывной подачи бензина – порционной. А обычные форсунки сменились форсунками электромагнитными, управляемыми ЭБУ.

K-Jetronic

Bosch K-Jetronic, дозатор-распределитель для 4-цилиндрового мотора Ford Escort XR3i

K-Jetronic — от немецкого Kontinuierlich, непрерывный — изначально механическая СВТ, без наличия какой-либо управляющей электроники, регулирующая подачу бензина по непрерывному циклу посредством механического расходомера воздуха. Была разработана в начале 1970-х как возможная замена механическим СВТ на основе дизельных ТНВД типа Bosch/Kugelfischer. Ввиду сложности и дороговизны применялась только на относительно мелкосерийных модификациях псевдоспортивного плана. Впервые появилась на Porsche 911 2.4 1973 модельного года для американского рынка. Наиболее известные носители: Porsche 911 74-83, Porsche 911 turbo 75-89, Porsche 924/924 turbo, Porsche 928 78-85, Mercedes-Benz W116 (SE), Audi 80 GTE, Volkswagen Scirocco GTi/GLi, Audi 100 5E, Volkswagen Golf GTi (I), Volkswagen Golf (II), Ford Capri/Granada 2.8, Ford Escort RS/XR3i 1.6 (Mark-III и Mark-IV), Ferrari 512BB. Последней машиной с данной СВТ стал Porsche 911 turbo (typ-964) 91-92.[источник не указан 2308 дней]

Визуальной особенностью данной СВТ является агрегат, состоящий из дозатора-распределителя, механически регулирующего подачу бензина в зависимости от силы воздушного потока (объёма воздуха, проходящего через тарированный рестриктор). Индивидуальные топливопроводы, отходящие от распределителя, имеют визуальное сходство с распределителем зажигания, но в отличие от последнего, в топливном распределителе нет вращающихся деталей и топливо поступает во все трубопроводы с одинаковым давлением и постоянно. Помимо дозатора-распределителя данная СВТ обязательно имеет общую дроссельную заслонку (одно- или последовательно открывающуюся двух-дроссельную), находящуюся за дозатором, а также различные механические клапаны, срабатывающие либо от терморегуляторов, либо от разрежения в вакуум-системе, являющейся неотъемлемой частью K-Jetronic. В поздних модификациях (KE-Jetronic) СВТ была дополнена различными электроклапанами и лямбда-зондом для обратной связи в случае применения на машинах с трёхкомпонентным катализатором. Однако электрооборудование всегда несло только вспомогательные функции.

K-Jetronic оказалась сложной, дорогой и требующей квалифицированного обслуживания системой и потому не получила широкого распространения. Её уделом были относительно дорогие машины. Общим недостатком данной СВТ были её механическая изощрённость при относительно невысокой надёжности. Хотя СВТ могла быть совмещена с катализаторами, как только электронные цифровые модули управления вышли на новый уровень надёжности, механическая K-Jetronic почти сразу оказалась забыта.

Измеритель Karman объемного расхода воздуха вихревого типа

1 – осциллятор; 2 – генератор турбулентности; 3 – передатчик; 4 – ультразвуковые волны; 5 – вихревые потоки; 6 – приемник; 7 – усилитель; 8 – фильтр; 9 – формирователь импульсов

Еще одним вариантом измерения расхода всасываемого в цилиндры воздуха в системе впрыска LH-Jetronic является измеритель объемного расхода, работающий на принципе завихрений типа Karman. Этот измеритель определяет завихрения потока воздуха, проходящего через генераторы турбулентности. Частота этих завихрений является мерой объемного расхода воздуха. Она замеряется испускаемыми волнами ультразвуковых колебаний, направленных перпендикулярно потоку воздуха на входе. Изменение скорости этих волн определяется ультразвуковым приемником и полученные сигналы анализируются в ECU.

Другие статьи по системам впрыска

  • Топливные системы двигателей
  • Системы впрыска топлива
  • Моновпрыск — устройство и принцип работы
  • Система впрыска топлива KE-Jetronic
  • Система впрыска топлива L-Jetronic
  • Топливные форсунки двигателей
  • Системы регулировки и подачи топлива
  • Система непосредственного впрыска топлива MED-Motronic

Преимущества L-Jetronic

Эта система имеет ряд преимуществ, которые не только позволят легче управляться с автомобилем, но и сэкономить расход топлива.


Рассмотрим некоторые плюсы L-Jetronic:

Значительное уменьшение расхода топлива на единицу пути.

В системе данного типа основным параметром, по которому определяется необходимое количество топлива, являются показания воздушного расходомера. На основании его показаний отмеряется необходимый объем воздуха, который при всасывании отклоняет заслонку датчика, чем оказывает давление на пружину, отклоняя ее под определенным углом.

Эти усилия преобразуются в электрические сигналы и отправляются на управляющий блок, в котором, в свою очередь, происходит расчет необходимого количества топлива, которое и впрыскивается через форсунку.

Более легкий пуск двигателя.

Особенно – в зимнее время года. Этому способствует специальная электромагнитная форсунка, время ее открытия находится в зависимости от того, какой температуры в данный момент времени охлаждающая жидкость.

Такая зависимость берется за исходные данные для расчета потому, что температура охлаждающей жидкости, по сути, это и есть температура двигателя. Во время запуска холодного двигателя, а дроссельная заслонка остается закрытой и воздуха для полноценной работы недостаточно.

Именно в этот момент, блок управления подает сигнал, который открывает клапан для дополнительной подачи воздуха. Воздух проходит сквозь впускной трубопровод, не затрагивая дроссельную заслонку. Именно это обеспечивает бесперебойную и стабильную работу двигателя в том числе в самые трескучие морозы.

Улучшение характеристик мощности двигателя автомобиля, а результат – увеличение возможностей управления.

Водители, в машинах которых установлена L-Джетроник, не должны самостоятельно регулировать работу системы впрыска. Электронная система L-Джетроник выполняет настройку самостоятельно, исходя из данных, которые получает от датчиков кислорода.

Система позволяет сократить выбросы вредных веществ, которые образовываются в момент сгорания топлива, чем помогает повысить экологичность.

Все эти характеристики говорят сами за себя. И оспорить удобство, простоту и экономичность системы L-Джетроник достаточно сложно. Она, в отличии от карбюраторной, отвечает всем современным требованиям, особенно тем,  которые относятся к экологии.

Регулятор системного давления

Рисунок 3 — Регулятор системного давления

Регулятор системного давления (РСД) должен поддерживать системное давление неизменным при любом расходе топлива на любых оборотах — от ХХ до максимальной нагрузки.

Топливо под давлением, развиваемым насосом, поступает на РСД. В РСД давление понижается до системного. Внутри регулятора находится подпружиненная мембрана (аналогично мембране дозатора между верхней и нижней камерами). При превышении давления топлива выше нормы происходит сдвиг мембраны вниз (по рис.3) и излишек топлива сливается через отверстие в штоке над шариком в обратку. Системное давление зависит от нижней пружины (по рис.3). Равновесие давлений наступает, когда

Рниж.пружины = Рсист

В процессе работы подвижный шток оранжевого цвета под действием верхней пружины опускается вниз до упора в серый неподвижный стакан и всегда находится в упоре, пока давление насоса превышает системное давление. При выключении зажигания, когда давление насоса упадет ниже системного, под действием нижней пружины мембрана пойдет вверх, толкая собой шарик и шток. Мембрана будет перемещаться вверх, пока шток не перекроет слив и не установится равновесие

Рнижн.пружины = Рверх.пружины + Рост.

где Рост — остаточное давление топлива после выключения бензонасоса, при котором наступает равновесие давлений.

Из двух предыдущих формул следует, что

Рсист= Рверх.пружины + Рост

Следовательно


Рост = Рсист — Рверх.пружины

Остаточное давление мы можем изменить винтом регулировки остаточного давления в РСД. Вкручивая винт, мы увеличиваем усилие верхней пружины и уменьшаем остаточное давление. Выкручивая винт, мы ослабляем усилие верхней пружины и увеличиваем остаточное давление. После выключения зажигания топливо в зоне между верхней камерой дозатора и форсунками не будет изолировано от РСД плунжером дозатора, ведь как бы ни было точно изготовлено сопряжение плунжер — гильза (букса), зазор в этом сопряжении все равно присутствует и топливо с верхней камеры медленно стравится через этот зазор до остаточного давления. При пониженном остаточном давлении после выключения двигателя происходит следующее. Топливо, находящееся в дозаторе и подводящем бензопроводе, при разогреве от еще горячего двигателя испаряется. Паровые топливные пробки, расширяясь, могут дойти до бензонасоса. Насос из-за низкой плотности паров бензина не сможет создать давление при запуске двигателя и поэтому запуск будет плохим. Возможно, двигатель вообще не заведется, пока не остынет. Давление топлива, находящегося в дозаторе и подводящем бензопроводе, при разогреве от еще горячего двигателя увеличивается. Если остаточное давление повышенное, возможно его увеличение от нагрева до давления открывания форсунок и подтекание топлива через форсунки.

Рисунок 4 — График изменения давления после выключения двигателя.

1 — системное давление; 2 — остаточное давление; 3 — рост давления от нагрева двигателя; 4 — давление открывания форсунок

Загрязнение дозатора

Внутри дозатора находятся фильтрующие топливные сетки. При длительной эксплуатации автомобиля возможно загрязнение сеток с ухудшением прохождения топлива через них. На больших оборотах бензина будет не хватать, двигатель не сможет развить максимальную мощность.

Рисунок 24 — сетки перед плунжером и форсунками

Существующие методики промывки дозатора несовершенны. Они или требуют частичной разборки дозатора или качество промывки оставляет желать лучшего. Предлагаю методику промывки дозатора возможно, не минимальными средствами, но с минимальной разборкой и максимально возможным качеством. Для этого понадобится бензонасос б/у (в Москве на разборках стоит до 1000 рублей), расширительный бачок ВАЗ 2109 и три шланга с переходниками. Все, изготовленное вами, неоднократно пригодится в будущем (возможно и не на вашей нынешней машине).

Рисунок 25 — установка для промывки инжектора

Промывку следует вести жидкостями типа «Winn’s» или «Carbon clean».

Предварительно необходимо отключить напряжение питания штатного насоса. После того, как вы собрали установку, заведите машину и дайте ей поработать 15 минут. Затем надо выключить зажигание и подождать 15 минут для того, чтобы жидкость отъела отложения внутри дозатора. Снова заведите машину и периодически подгазовывайте. Вибрация при подгазовке помогает отслоиться отложениям от стенок. После промывки следует заменить свечи.

Преимущества подобного метода промывки трудно переоценить:

  • Промывается вся система впрыска полностью, включая форсунки
  • Промываются камера сгорания, клапана и кольца, удаляется нагар

Давления в дозаторе

Рисунок 1 — Давление в дозаторе

Между верхней и нижней камерами дозатора находится мембрана. На мембрану снизу действует давление в нижней камере Рн и давление, оказываемое пружиной Рп. На мембрану сверху действует давление Рв.

Если давление в верхней камере Рв превысит Рн+Рп, мембрана переместится вниз и увеличится зазор для поступления топлива к форсунке, что приведет к снижению Рв

Если давление в верхней камере Рв станет меньше Рн+Рп, мембрана переместится вверх и уменьшится зазор для поступления топлива к форсунке, что приведет к увеличению Рв

Другими словами, поддерживается равновесие давлений:

Рв=Рн+Рп

Давление, оказываемое пружиной неизменно

Рп=0.2 атм

Следовательно

Рв = Рн + 0.2 атм

Давление в верхней камере меньше системного за счет слива топлива через форсунки. Давление в верхней камере при понижении давления в нижней может упасть вплоть до давления закрытия форсунок. Давление в верхней камере зависит только от давления в нижней камере и от усилия пружины в нижней камере и больше ни от чего. Повысить давление в верхней камере сверх нормы может или забитая форсунка или подтекание топлива через резиновое уплотнение, минуя дозировочное отверстие (щель в гильзе высотой 5 мм и шириной 0.2 мм). Понизить давление в верхней камере сверх нормы может сильно текущая форсунка или забитая щель (дозировочное отверстие) гильзы дозатора. Оба эти случая исключительно редки и могут не рассматриваться на практике.

Давление в нижней камере меньше системного за счет сопротивления прохождению топлива через ЭГРД и за счет слива топлива с нижней камеры через калиброванное отверстие диаметром 0.3 мм. Давление в нижней камере зависит от системного давления, от забитости сливного отверстия 0.3 мм и от самого ЭГРД.

Для улучшенного понимания соотношения и взаимосвязи давлений предлагается электрическая схема — аналог работы дозатора, где напряжение — аналог давления, а ток — аналог расхода.

Конструкция системы распределенного впрыска KE-Jetronic


В ее конструкции просматривается сосредоточенность на имплантации добавочных компонентов:

  • Электронного блока, упорядочивающего процесс впрыска;
  • Электрогидравлического регулятора (задатчика) давления (ЭГЗД);
  • Контроллера давления мембранного типа;
  • Воздушного расходомера с датчиком, дополненным потенциометром, фиксирующим положение ротаметра.

Причем в том, какие из величин станут рассматриваться в качестве входных параметров для правильного функционирования электронного блока, просматривается явная зависимость от разновидности силового агрегата.

Среди них могут оказаться от четырех до одиннадцати разнообразных механических величин, преобразуемых в электронные импульсы. Это могут быть показания датчиков, ответственных за фиксацию:

  • Уровня разогрева двигателя;
  • Насыщенности смеси кислородом;
  • Скорости оборотов коленчатого вала и его относительного положения;
  • Крайней позиции заслонки дросселя;
  • Загруженности мотора, измеряемой по относительному угловому позиционированию ротаметра в воздухомере;
  • Расположения автомобиля относительно уровня моря;
  • Ряда других параметров.

Все части системы ориентированы на гарантию достижения автоматического и качественного смесеобразования во всех режимах работы силовой установки. Именно наличие многочисленных датчиков и заложенная в систему программа позволяют в значительной степени упростить достижение поставленной задачи.

Чтобы понять суть привнесенных изменений, рассмотрим функциональные особенности и предназначение введенных в конструкцию элементов.

Отметим, что главным следствием изменяющегося форсуночного давления в двигателе, оборудованном распределенным впрыском, оказывается изменение объема распыляемого форсункой топлива. В KE-Jetronic качество топливной смеси определяется работой электрогидравлического регулятора давления.

В данном случае он функционирует, замещая собой регулятор управляющего давления. По сути, он являет собой электроуправляемый клапан, изменяющий уровень подпорного давления. Проводя аналогию с предшественницей – системой K-Jetronic, давление в данном случае будет подводиться не к самому плунжеру (золотнику), а к клапанам распределительного дозатора.

Задатчик и его электромагнитная компонента спроектированы таким образом, чтобы объем бензина, протекающий через жиклер регулятора, был пропорционален величине силы тока, проходящего по катушке управляющего электромагнита.

В KE-Jetronic применен электронный управляющий блок, с реализованным в нем аналоговым принципом работы. Возникающие в датчиках электронные импульсы поступают на него, обрабатываются согласно вшитой программе, и затем, в виде исходящих сигналов, возвращаются к исполнительным устройствам:

  • На задатчик давления (ЭГЗД);
  • На пусковую форсунку впрыска;
  • На клапаны выравнивания холостого хода подсистемы, нейтрализующей воздействие бензиновых паров.

В качестве устройства, главной функциональной задачей которого является поддержание необходимого давления в распределяющем дозаторе, используется регулятор давления мембранного типа. Его технологически обоснованным местом установки является возвратная магистраль системы.

Чтобы устранить очевидный недостаток, возникающий из-за ограниченности регулировочного диапазона вакуумных регуляторов, используются введенные в их конструкцию вакуумные камеры, однако в KE-Jetronic их функция по корректировке состава смеси возлагается на потенциометрический датчик, размещаемый в воздушном расходомере.

Именно с его помощью фиксируются углы, на которые проворачивается напорный диск. Электронный блок управления воспринимает изменение величины этого угла как сигнал о том, что изменяется нагрузка мотора. Таким образом, расходомер, оборудованный таким датчиком, существенно обогащает сферу использования регулятора давления мембранного типа.

Как упоминалось, количество входных датчиков может колебаться от 4ех до 11ти, а число обрабатываемых вычислительным блоком сигналов будет существенно влиять на качество управления двигателем.

Азы теории регулирования

Мы видим в разных частях КЕ три однотипных узла — подпружиненную мембрану, регулирующую количество топлива над ней. Этот узел находится в РСД, в дозаторе (мембрана между верхней и нижней камерой) и в форсунке (правда, в ней не мембрана, но идея ее работы такая же).

В теории автоматического регулирования подобный узел называется П-регулятором, где П означает «Пропорциональный». В подобном регуляторе невозможно полностью устранить отклонение регулируемого параметра от нормы. Отклонение можно только уменьшить. Во сколько раз уменьшается отклонение, определяет т.н. коэффициент пропорциональности.

Рисунок 6 — П-регулятор давления. Сигнал в норме. Пример

Задача регулятора — обеспечить равенство заданию давления на выходе вне зависимости от изменений давления на входе.

Рисунок 7 — П-регулятор давления. Отклонение от нормы. Пример

Как видно из рисунка 7, при отклонении входного давления от задания на 1 атм, на выходе отклонение получается меньше в 10 раз, но не устраняется полностью.

Рисунок 8 — П-регулятор давления в KE-jetronic

Элементы П-регулятора в РСД показаны на рис.3. Множитель К зависит от конструктивных особенностей регулятора (в случае РСД множитель К определяет влияние зазора между шариком и серым штоком на системное давление)

Расходомер воздуха

Расходомер воздуха системы «L-J» отличается от расходомеров рассмотренных выше систем «K-J», «KE-J». Воздушный поток воздействует на измерительную заслонку 2, (рис. 3) прямоугольной формы. Заслонка закреплена на оси в специальном канале, поворот заслонки преобразуется потенциометром в напряжение, пропорциональное расходу воздуха. Потенциометр представляет собой, как правило, цепочку резисторов, включенных параллельно контактной дорожке.

Воздействие воздушного потока на измерительную заслонку 2 уравновешивается пружиной. Для гашения колебаний, вызванных пульсациями воздушного потока и динамическими воздействиями характерными для автомобиля, особенно на плохих дорогах, в расходомере имеется демпфер 3 с пластиной 4. Пластина 4 выполнена как одно целое с измерительной заслонкой 2. Резкие перемещения измерительной заслонки становятся невозможными из-за воздействия на пластину 4 усилия воздуха сжимаемого в демпферной камере.

На входе в расходомер встроен датчик температуры поступающего воздуха 7. В верхней части расходомера расположен обводной канал 1 с винтом качества (состава) смеси 6. Расходомеры бывают с шести- и семи штекерным подключением.

Рис. 3. Расходомер воздуха с датчиком температуры всасываемого воздуха:1 обводной канал, 2 измерительная заслонка, 3 демпферная камера, 4 пластина демпфера, 5 потенциометр, 6 винт качества (состава) смеси холостого хода, 7 датчик температуры, 8 контакты топливного насоса.


С этим читают