Содержание
- 1 Применение в настоящее время
- 2 Индикаторная диаграмма — четырехтактный двигатель
- 3 Как работает четырехтактный двигатель
- 4 Общие требования к техническому обслуживанию стс и к.
- 5 Порядок работы
- 6 Индикаторы «Майгак»
- 7 Посадка и остойчивость судна, теоретические основы. Остойчивость, метацентрическая высота. Информация об остойчивости.
Применение в настоящее время
Четырёхтактные двигатели бывают бензиновыми и дизельными. Применяются эти двигатели на транспортных или стационарных энергоустановках. Использовать такой двигатель рекомендуется в случаях, когда есть возможность регулировать соотношение оборотов, мощности и крутящего момента.
Например, если двигатель, работает в паре с электрогенератором, то нужно выдерживать нужный диапазон оборотов. А при использование промежуточных передач, четырёхтактный двигатель можно адаптировать к нагрузкам в достаточно широких пределах. То есть использовать в автомобилях.
Вернёмся к истокам его создания. В группе изобретателя Отто работал очень талантливый инженер Готлиб Даймлер, он понял что значит четырехтактный двигатель, его перспективы развития, и предложил на базе четырёхтактного двигателя построить автомобиль. Но шеф не посчитал нужным что-то менять в двигателе, и Даймлер, увлеченный своей идеей, покинул мэтра.
И через некоторое время, вместе с другим энтузиастом Карлом Бенцом в 1889 году создали автомобиль, который приводился в движение именно бензиновым четырехтактным двигателем внутреннего сгорания изобретателя Отто.
Эта технология с успехом используется и сегодня. В случаях, когда силовая установка работает на переходных режимах или режимах со снятием частичной мощности ‒ она незаменима, так как обеспечивает стабильную устойчивость процесса.
Индикаторная диаграмма — четырехтактный двигатель
Индикаторная диаграмма четырехтактного двигателя с внешним смесеобразованием и посторонним зажиганием приведена на фиг.
Индикаторная диаграмма четырехтактного двигателя представлена на фиг. При определении работы в цилиндре из площади F, заключенной между линиями сжатия и расширения, следует вычесть площадь /, заключенную между линиями всасывания и выхлопа. При индицировании двигателей в эксплуатационных условиях площадью / вследствие малой величины обычно пренебрегают.
На индикаторной диаграмме четырехтактных двигателей процесс выпуска представлен линией br, показывающей изменение давления внутри цилиндра за такт выпуска.
Индикаторная диаграмма и среднее ( индикаторное давление. |
На рис. 14 представлена индикаторная диаграмма четырехтактного двигателя.
Индикаторная диаграмма четырехтактного карбюраторного двигателя. |
На рис. 13 приведена индикаторная диаграмма четырехтактного двигателя, которая снимается специальным прибором — индикатором.
Примерная индикаторная диаграмма четырехтактного карбюраторного двигателя без наддува ( установки УИТ-65, ИТ9 — 2М. пунктирная линия соответствует атмосферному давлению.| Примерная индикаторная диаграмма четырехтактного двигателя с наддувом ( установка ИТ9 — 1. пунктирная линия соответствует атмосферному давлению. |
На рис. 2 представлена примерная индикаторная диаграмма четырехтактного двигателя без наддува, а на рис. 3 — двигателя с наддувом. Линия АВ на обеих диаграммах изображает такт впуска в цилиндр свежей рабочей смеси.
Индикаторные диаграммы четырехтактного двигателя при различном моменте зажигания смеси. |
На рис. 38 представлены три индикаторных диаграммы четырехтактного двигателя при различных моментах зажигания смеси. По горизонтали отложены углы поворота коленчатого вала, а по вертикали — давления газов в цилиндре двигателя. Значения, линий следующие: 1 — впуск ( всасывание), 2 — сжатие, 3 — расширение газов ( рабочий ход) и 4 — выпуск отработавших газов.
На рис. 77, а приведена в увеличенном масштабе часть индикаторной диаграммы четырехтактного двигателя без наддува, описывающая процесс газообмена.
На рис. 6.12 показана схема работы, а на рис. 6.13 индикаторные диаграммы четырехтактных двигателей: а — карбюраторного; б — бескомпрес-со рного дизеля.
Принцип действия двигателей с подводом теплоты при V const ясен из рис. 16.1, на котором изображены схема и индикаторная диаграмма четырехтактного двигателя.
Последующая часть диаграммы а-с — z — b, изображающая процессы сжатия, сгорания и расширения, не отличается от индикаторной диаграммы четырехтактного двигателя.
Как работает четырехтактный двигатель
Конструктивно рабочий цикл типового четырехтактного агрегата обеспечивается работой следующих элементов:
- цилиндр;
- поршень — выполняет возвратно-поступательные движения внутри цилиндра;
- клапан впуска — управляет процессом подачи топливовоздушной смеси в камеру сгорания;
- клапан выпуска — управляет процессом выброса отработавших газов из цилиндра;
- свеча зажигания — осуществляет воспламенение образовавшейся топливовоздушной смеси;
- коленчатый вал;
- распределительный вал — управляет открытием и закрытием клапанов;
- ременной или цепной привод;
- кривошипно-шатунный механизм — переводит движение поршня во вращение коленчатого вала.
Рабочий цикл четырехтактного двигателя
Рабочий цикл такого механизма состоит из четырех тактов, в ходе которых реализуются следующие процессы:
- Впуск (нагнетание топлива и воздуха). В начале цикла поршень находится в ВМТ. В момент, когда коленвал начинает вращаться, он воздействует на поршень и переводит его в НМТ. Это приводит к образованию разрежения в камере цилиндра. Распредвал воздействует на клапан впуска, постепенно открывая его. Когда поршень оказывается в крайнем положении клапан полностью открыт, в результате чего происходит интенсивное нагнетание топлива и воздуха в камеру цилиндра.
- Сжатие (увеличение давления горючей смеси). На втором этапе поршень начинает обратное перемещение к верхней мертвой точке такта сжатия. Коленвал совершает еще один поворот, а оба клапана полностью закрыты. Внутреннее давление увеличивается до величины 1,8 МПа и повышается температура горючей смеси до 600 С°.
- Расширение (рабочий ход). При достижении верхней позиции поршнем в камере сгорания устанавливается максимальная компрессия до 5 МПа и срабатывает свеча зажигания. Это приводит к возгоранию смеси и увеличению температуры до 2500 С°. Давление и температура приводят к интенсивному воздействию на поршень, и он начинает вновь перемещаться к НМТ. Коленвал совершает еще поворот, и таким образом, тепловая энергия переходит в полезную работу. Распредвал открывает выпускной клапан, и при достижении поршнем НМТ он полностью раскрыт. В результате отработавшие газы начинают постепенно выходить из камеры, а давление и температура снижаются.
- Выпуск (удаление отработавших газов). Коленвал двигателя поворачивается, и поршень начинает движение в верхнюю точку. Это приводит к выталкиванию отработавших газов и еще большему снижению температуры и уменьшению давления до 0,1 МПа. Далее, начинается новый цикл, в ходе которого указанные процессы вновь повторяются.
Четырехтактный двигатель получил широкое распространение. Он может работать как с бензином, так и с дизельным топливом. Отличием рабочего цикла для дизеля является то, что воспламенение топливовоздушной смеси происходит не от искры, а от высокого давления и температуры в конечной точке такта сжатия.
Общие требования к техническому обслуживанию стс и к.
ПОД СУДОВЫМИ ТЕХНИЧЕСКИМИ СРЕДСТВАМИ ПОНИМАЮТСЯ УСТАНОВКИ, АГРЕГАТЫ, МЕХАНИЗМЫ И ДРУГОЕ ОБОРУДОВАНИЕ СУДНА, ОБЕСПЕЧИВАЮЩИЕ ЕГО РАБОТОСПОБНОСТЬ В СООТВЕТСТВИИ С НАЗНАЧЕНИЕМ.
1. Общие положения 1.1. Техническая эксплуатация судовых технических средств и конструкций (СТС и К) должна производиться в соответствии с инструкциями заводов-изготовителей и требованиями настоящих Правил.
1.2. Все операции связанные с вводом в действие, изменением режимов работы, выводом из действия, проворачиванием и разборкой технических средств, должны производиться с разрешения, по указанию или с извещением должностных лиц (капитана, вахтенного помощника капитана, старшего механика, вахтенного механика, ответственного по заведованию), если это предусмотрено соответствующими пунктами Правил или другими документами, регламентирующими действия судового экипажа. 1.3. Бездействия, связанные с техническим использованием, обслуживанием и ремонтом СТСиК должны регистрироваться вахтенным механиком в машинном журнале. 1.4. На судне должен быть организован учет технического состояния СТСиК а также учет наличия и движения сменно-запасных частей и предметов, материально-технического снабжения по заведованиям.
1.5. При в воде в действие оборудования, убедиться что оборудование исправно, КИП исправны и так далее.
БИЛЕТ 2.
Порядок работы
Рабочий цикл четырёхтактного двигателя происходит за четыре такта, каждый из которых составляет один ход поршня между мертвыми точками, при этом двигатель проходит следующие фазы:
- Впуск. Длится от 0 до 180° поворота кривошипа. При впуске поршень движется вниз от верхней мертвой точки, открыт впускной клапан. В цилиндре образуется разрежение, за счёт которого в него засасывается свежий заряд. При наличии нагнетателя смесь нагнетается в цилиндр под давлением.
- Такт сжатия. 180—360° поворота кривошипа. Поршень движется к ВМТ, при этом заряд сжимается поршнем до давления степени сжатия. За счёт сжатия достигается бо́льшая удельная мощность, чем могла бы быть у двигателя, работающего при атмосферном давлении (такого как двигатель Ленуара), за счёт того, что в небольшом объёме заключен весь заряд рабочей смеси. Кроме того, повышение степени сжатия позволяет увеличить КПД двигателя. В двигателях Отто любой конструкции сжимается горючая смесь, в дизелях — чистый воздух.
В конце такта сжатия происходит зажигание заряда в двигателях Отто или начало впрыска топлива в двигателях Дизеля.
- Рабочий ход 360—540° кривошипа — движение поршня в сторону нижней мёртвой точки под давлением горячих газов, передаваемого поршнем через шатун коленчатому валу. В двигателе Отто при этом происходит процесс изохорного расширения, в дизеле за счёт продолжающегося горения рабочей смеси подвод теплоты продолжается столько, сколько длится впрыск порции топлива. Поэтому сгорание в дизеле обеспечивает процесс, близкий к адиабатному, расширение происходит при одинаковом давлении.
- Выпуск. 540—720° поворота кривошипа — очистка цилиндра от отработавшей смеси. Выпускной клапан открыт, поршень движется в сторону верхней мёртвой точки, вытесняя выхлопные газы.
В реальных двигателях фазы газораспределения подбираются таким образом, чтобы учитывалась инерция газовых потоков и геометрия трактов впуска и выпуска. Как правило, начало впуска опережает ВМТ от 15 до 25°, конец впуска отстает примерно на столько же от НМТ, так как инерция потока газов обеспечивает лучшее заполнение цилиндра. Выхлопной клапан опережает НМТ рабочего хода на 40 — 60°, при этом давление сгоревших газов к НМТ падает и противодавление на поршень при выхлопе оказывается ниже, что повышает КПД. Закрытие выхлопного клапана также относится за ВМТ впуска для более полного удаления выхлопных газов.
Так как процесс горения и распространение фронта пламени в двигателях Отто требуют определенного времени, зависящего от режима работы двигателя, а максимальное давление из соображений геометрии кривошипно-шатунного механизма желательно иметь от 40 до 45° от ВМТ начала рабочего хода, зажигание осуществляется с опережением — от 2 — 8° на холостом ходу до 25 — 30° на режимах полной нагрузки.
Рабочий процесс дизельного двигателя отличается от описанного выше тем, что заряд в камере сгорания — чистый воздух, нагретый от сжатия до температуры воспламенения. За некоторое время до ВМТ, называемое временем инициации, в камеру сгорания начинает впрыскиваться жидкое топливо, распыленное до капель, каждая из которых подвергается инициации, то есть нагревается, испаряясь с поверхности, при испарении вокруг каждой из капель образуется и воспламеняется в горячем воздухе горючая смесь. Время инициации для каждого дизеля стабильно, зависит от особенностей конструкции и изменяется только с его изнашиванием, поэтому, в отличие от момента зажигания, момент впрыска в дизеле задается раз и навсегда при его конструировании и изготовлении. Так как смесь во всем объёме камеры сгорания в дизеле не образуется, а факел распыла форсунки занимает небольшой объём камеры, количество воздуха на каждый объём впрыснутого топлива должно быть избыточным, в противном случае процесс горения протекает не до конца, а выхлопные газы содержат большое количество недогоревшего углерода в виде сажи. Само горение длится столько времени, сколько длится впрыскивание данной конкретной порции топлива — от нескольких градусов после ВМТ на холостом ходу до 45-50° на режимах полной мощности. В мощных дизелях цилиндр может снабжаться несколькими форсунками.
Индикаторы «Майгак»
Диаграммы снимаются с каждого рабочего цилиндра с помощью специального прибора — индикатора поршневого типа «Майгак». Наличие диаграммы позволяет определить важные для анализа рабочего процесса параметры Рi, Рс и Рмакс. Диаграмма на рис. 1 типична для двигателей, при эксплуатации которых главная задача состояла в снижении уровня механической напряженностиИзменение механической напряженности и содержания в выхлопе окислов азота. Для этого, как уже ранее отмечалось, осуществляется более поздний впрыск топлива и сгорание происходит с меньшим ростом давления и температур в камере сгорания.
Рис. 1 Индикаторная диаграмма двигателя МАН-БВ KL-MC
Если же главная цель состоит в повышении экономичности двигателя, то сгорание организуется с более ранней подачей топлива и, соответственно, большим ростом давлений. При наличии электронной системы управления подачей топлива такая перестройка легко осуществляется.
На диаграмме рис. 2 четко видны два горба — сжатие и затем сгорание. Такой характер достигнут за счет еще более поздней подачи топлива. На рисунках приведены два вида диаграмм — свернутая, по которой определяется среднее индикаторное давление, и развернутая, позволяющая визуально оценить характер развития процессов. Подобные диаграммы можно получить при использовании поршневого индикатора «Майгак», для которого необходимо наличие индикаторного приводаПроверка регулировки индикаторного привода, позволяющего
Рис. 2 Индикаторная диаграмма двигателя МАН-БВ SMC
синхронизировать вращение барабана индикатора с движением поршня индицируемого цилиндра. Подключение привода позволяет получить свернутую диаграмму, планиметрированием площади которой определяется среднее индикаторное давление, представляющее собой некоторое среднее условное давление, действующее на поршень и совершающее в течение одного хода работу, равную работе газов за цикл.
Pi = Fинд.д/ L m, где Fинд.д — площадь диаграммы, пропорциональная работе газов за цикл, L — длина диаграммы, пропорциональная величине рабочего объема цилиндра, m — масштабный множитель, зависящий от жесткости пружины поршня индикатора.
По Pi подсчитывается индикаторная мощность цилиндра Ni = C Pi n, где η — число оборотов 1/мин и С — постоянная цилиндра. Эффективная мощность Ne = Ni ηмех кВт, ηмех -механический кпд двигателя, который можно найти в документации по двигателю.
Перед тем, как приступить к индицированию, проверьте состояние индикаторного крана и привода. Возможные ошибки в их состоянии проиллюстрированы на рис. 3.
Гребенка (рис. 2) снимается при ручном управлении шнуром, отсоединенным от индикаторного привода. Наличие гребенки позволяет оценить стабильность циклов и более точно замерить Рмакс. Если пики одинаковы, то это свидетельствует о стабильной работе топливной аппаратуры.
Важно отметить, что поршневые индикаторы обладают малой частотой собственных колебаний. Последняя должна,как минимум, в 30 раз превышать число оборотов двигателя
В противном случае индикаторные диаграммы будут сниматься с искажениями. Поэтому применение
Рис. 3 Ошибки в настройке привода индикатора
поршневых индикаторов ограничивается 300 об/мин. Индикаторы со стержневой пружиной обладают большей частотой собственных колебаний и их применение допускается в двигателях с частотой вращения до 500-700 об/мин. Однако, в таких двигателях индикаторный привод отсутствует и приходится ограничиваться снятием гребенок или развернутых диаграмм, по которым среднее индикаторное давлениеОпределение среднего индикаторного давления не определить.
Второе ограничение касается величины максимального давления в цилиндрах. В современных двигателях с высоким уровнем форсировки оно достигает 15-18 МПа. При используемом в индикаторе «Майгак» поршне для дизелей диаметром 9,06 мм максимально жесткая пружина ограничивает Рмакс = 15 МПа. При такой пружине точность измерения весьма низкая, так как масштаб пружины составляет 0,3 мм на 0,1 МПа.
Существенно также, что работа по индицированию довольно утомительна и трудоемка, а точность результатов невысока. Малая точность обусловливается ошибками, возникающими из-за несовершенства индикаторного привода и неточности обработки индикаторных диаграмм при их ручном планиметрировании. Для сведения — неточность индикаторного привода, выражающаяся в смещении ВМТ привода от ее истинного положения на 1°, приводит к ошибке примерно в 10%.
Рекомендуется к прочтению:Контроль и регулирование рабочих процессов, измерительные приборыЭлектронные индикаторы
Посадка и остойчивость судна, теоретические основы. Остойчивость, метацентрическая высота. Информация об остойчивости.
ОСТО́ЙЧИВОСТЬ — способность плавучего средства противостоять внешним силам, вызывающим его крен или дифферент и возвращаться в состояние равновесия.
Судно плавает на поверхности воды под действием двух основных сил: силы тяжести и Архимедовой силы. Сила тяжести -“тянет судно вниз”, равна его весу и приложена к центру тяжести судна ЦТ. Сила плавучести или Архимедова сила –“выталкивает судно из воды”, равна его водоизмещению и приложена в центре подводного объема ЦВ судна.
В “прямом” положении судна эти силы уравновешивают друг друга и лежат на одной вертикальной линии. При крене форма подводной части корпуса изменится, ЦВ сместится в сторону накрененного борта, и возникнет так называемыйвосстанавливающий момент, который противодействует крену. При наклонении судна ЦВ как бы поворачивается вокруг точки, называемой метацентром m.
Расстояние от метацентра m до центра тяжести ЦТ (метацентрическая высота) является характеристикой остойчивости судна. Чем меньше судно, тем больше должна быть метацентрическая высота. Чем ниже расположен центр тяжести, тем судно остойчивее. Существует простое правило: КАЖДЫЙ КИЛОГРАММ ПОД ВАТЕРЛИНИЕЙ ПОВЫШАЕТ ОСТОЙЧИВОСТЬ, А КАЖДЫЙ КИЛОГРАММ НАД ВАТЕРЛИНИЕЙ УХУДШАЕТ ЕЕ.
С этим читают
- Что такое такое степень сжатия двигателя и на что она влияет
- Что такое мощность двигателя, крутящий момент и удельный расход топлива
- Температура выхлопных газов бензинового двигателя в коллекторе
- Степень сжатия двигателя
- Детонационная стойкость бензина — это что такое?
- Как определить объем двигателя автомобиля
- Объем цилиндра
- История создания двигателей внутреннего сгорания
- Система непосредственного впрыска топлива в бензиновых двигателях: принцип работы
- Система распределенного впрыска kе-jetronic