Как правильно организовать освещение комнат в квартире или частном доме

Содержание

Характеристики


При подробном описании будем учитывать следующие характеристики:

  • цоколь (патрон) – место крепления колбы;
  • цветопередача;
  • светоотдача (световая эффективность);

Светоотдача

Показывает, сколько люмен отдаёт источник света при мощности 1 Вт. Например, стандартная лампа накаливания имеет светоотдачу 10 лм/Вт, люминесцентная – 70 лм/Вт, значит, при одной и той же мощности, последняя будет светиться в 7 раз ярче.

В разговоре о светоотдаче необходимо упомянуть так называемые энергосберегающие технологии.

По существу, энергосбережение обозначает: мало потребляем – много светим. В этом контексте наибольшей энергоэффективностью обладают натриевые источники света (см. сравнительную таблицу).

Однако, энергосберегающими принято называть либо светодиодные, либо люминесцентные лампы.

Коэффициент цветопередачи (Ra)

Показывает, насколько естественно выглядят цвета в испускаемом свете. Чем больше данное число, тем лучше характеристики источника, тем ближе его свет к естественному освещению.

Качественные градации коэффициента указаны в таблице:

Ra качество цветопередачи
<39 недостаточно
40–59 достаточно
60–79 хорошо
>80 очень хорошо

Цветовая температура

Определяет цвет светящегося объекта, измеряется в градусах Кельвина (К). В зависимости от температуры света, окружающие предметы выглядят несколько по-разному.

Обычный белый лист бумаги может иметь оттенки от тёплых и желтоватых при 2500 К (свеча), до сияюще-голубых – при температуре от 6500 К.

Различают следующие оттенки света:

Цвет. температура, К Оттенок
2700 – 3200 тёплый белый
3200 – 4500 нейтральный белый (дневной)
4700 – 6000 белый
больше 6000 холодный белый

Свет различной температуры по-разному воздействует на восприятие человека (вспомним хотя бы театральные постановки и различные инсталляции, где свет играет существенную роль в передаче эмоционального состояния).

Тёплый белый (2700 – 4200 К) свет помогает расслабиться, настраивает на спокойный лад. Подходит для освещения спальных, гостиных и столовых комнат.

Дневной свет (4200 – 5500 К) помогает сконцентрироваться на выполнении заданий, наиболее подходит для офисных помещений и для освещения рабочей зоны (в том числе на кухне), для гримёрных.

Холодный белый свет (5500 – 6000 К) является достаточно энергичным, подходит для ванных комнат, кухонь (рабочая поверхность, но не обеденный стол).

Особенности ртутных ламп

Главным преимуществом ртутных ламп принято считать высокую светоотдачу. Обычно данный показатель находится на уровне 55 лм/Вт. При этом прослужить устройство способно очень долго. Средняя производительность составляет 10 тыс. часов. Размеры многие модели имеют компактные, что является несомненным плюсом.


Помимо прочего, следует отметить высокую устойчивость ртутных ламп к плохим погодным условиям. Однако на морозе их использовать нельзя. К недостаткам данного типа можно отнести плохую цветопередачу, а связано это с ограниченным спектром лучей. В результате различать цветные предметы может быть затруднительным для человека. Еще один недостаток кроется в ограниченных возможностях лампы.

К сожалению, работать она способна исключительно на переменном токе. Включение ее может осуществляться только при помощи балластного дросселя. Длительность разгорания очень велика и составляет в среднем 7 минут. При этом повторное включение не ускорит процесс, а, скорее, наоборот. Также газоразрядная ртутная лампа страдает повышенной пульсацией светового потока, и в этом плане она проигрывает люминесцентным аналогам. В конце следует также отметить, что световой поток со временем у нее будет уменьшаться.

Закон обратных квадратов

Не лишним будет упомянуть здесь также закон обратных квадратов, с действием которого вы непременно столкнётесь. Звучит он так: интенсивность света обратно пропорциональна квадрату расстояния от его источника. Это означает, что с увеличением расстояния от источника света в два раза, освещённость какого-либо объекта упадёт вчетверо. Это много – две ступени экспозиции. Наше зрение адаптируется к изменению освещённости, и на глаз разница в две ступени будет не слишком заметна. На фотографии же она станет очевидной.

Представьте, что три человека сидят в комнате при свете настольной лампы. Один из них находится в метре от лампы, другой – в двух метрах, а третий – в трёх. Согласно закону обратных квадратов, второй человек получит в четыре раза, а третий – в девять раз меньше света, чем первый, а, стало быть, сделать хороший групповой портрет без дополнительной подсветки будет трудновато.

Прямой солнечный свет не подпадает под закон обратных квадратов опять же в силу большого расстояния до солнца. Как бы вы не перемещали объект съёмки по поверхности нашей небольшой планеты, изменения в его расстоянии до солнца будут пренебрежимо малы.

Примечания[править]

  1. Г.С. Ландсберг Элементарный учебник физики. Том 3. Колебания и волны. Оптика. Атомная и ядерная физика. — 12-е изд.. — М.: Физматлит, 2001. — 656 с. — ISBN 5-9221-0138-2о книге
  2. Д. Роджерс Алгоритмические основы машинной графики = Procedural elements for computer graphics ‭. — пер. с англ.. — М.: Мир, 1989. — ISBN 5-03-000476-9,0-07-053534-5о книгеРегулярное выражение «ISBN» классифицировало значение «0070535345(англ.)» как недопустимое.
  3. белый светодиод 150 lm/W. Шаблон:Internetquelle
  4. weiße Leuchtdiode mit 136 lm/W: OSRAM Opto Semicondcutors: 21. Juli 2008
  5. laut Osram
  6. nach Osram
  7. angeblich bei 50 W erreicht, Quelle
  8. The Great Internet Light Bulb Book, Part I

Нормы освещенности или сколько требуется человеку света?

Если излучаемый источником освещения свет раздражает сетчатку человеческого глаза, то такой свет считается некачественным. Не всегда наилучшим вариантом может быть самая дорогая лампа, к примеру, фитолампы стоят достаточно дорого, но для людей они не подходят. Единицей измерения освещения принято считать – 1 люкс (лк). Разницы между 100 и 200 Лк человеческий глаз не улавливает, но при этом организм может пострадать. Во дворе в солнечную погоду может быть 100.000 Лк, а возле окна – только 100 Лк, но такой колоссальной разницы человек не заметит. Это приводит ктому, что людям часто катастрофически не хватает света у себя дома.

Зависит норма освещенности от того, для каких целей будет использоваться помещение. Должно быть больше всего света – 200 Лк в гостиных, кухнях, ванных комнатах и гардеробах. По санитарным нормам на лестничных пролетах искусственное освещение необходимо устанавливать с источником света, излучающим 150 Лк, а в коридорах, прихожих и комнатах отдыха достаточно 100 Лк. Для чтения требуется освещение 30−50 Лк.

Для нежилых помещений устанавливаются другие нормы. Чтобы пребывание в спортзале было наиболее комфортным, должен быть уровень света выше 300 Лк, для офисов нужно от 300 до 500 Лк, на складе же хватит и 200 Лк.

Ради экономии электричества, приведены данные минимальные нормы, но этого освещения некоторым людям может быть недостаточно, поэтому в таких случаях, искусственное освещение подбирается индивидуально, принимая нормы во внимание

Виды газоразрядных ламп

Для классификации газоразрядных источников света используются различные критерии: наполнение и форма колбы, конструкция электродов, давление.

По типу наполнения газоразрядные источники света делятся на 3 вида:

  • люминесцентные (покрыты люминофором);
  • газосветные (наполнены газом);
  • металлогалогенные (светится пар металлов).

Из газов используется неон, криптон, ксенон, гелий, аргон или их смеси. Самые распространенные металлы ртуть и натрий. Большинство производителей используют пары ртути, хотя натрий эффективнее. Нередко газ и пары ртути применяются одновременно. Разряд дуговой, импульсный или тлеющий.

Люминесцентные изделия разделяются по внутреннему давлению:

  • ДРЛ (дуговые ртутные люминофорные) высокого давления;
  • ГРЛНД – низкого давления.

Производители предлагают колбы и электроды различной конструкции, системы для принудительного охлаждения.

Высокого давления

Источники света с высоким давлением (более атмосферы) подключаются к сети 220/380 В, мощность приборов может достигать нескольких десятков киловатт. Характеристики практически не зависят от температуры среды. Слишком высокая или слишком низкая температура меняет лишь период разгорания. Срок службы до 20-и тыс. часов, цоколь Е27 (для мощности 127 В) или Е40 (для остальных).

Отличие от изделий с низким давлением – повышенная мощность и компактные размеры.

Низкого давления

Для источников света с низким давлением (менее атмосферы) характерна колба в виде трубы. Покрытие флуоресцентное или люминесцентное. Наполнение – аргон, неон или натрий, электроды из вольфрама, покрытого кальцием, стронцием, барием. Эти газовые лампы используются для освещения помещений.


К этой группе относятся компактные модели с цоколем Е27. Максимальная мощность до 60-и Ват, срок службы – до 12-и тыс. часов. Эти лампы не зажигаются при температуре среды ниже -5оС или сниженном напряжении.

Эритемные и бактерицидные приборы выпускаются без покрытия, поэтому излучают ультрафиолетовую часть спектра. Используются для обеззараживания воздуха и облучения животных и людей.

Историческая эволюция приборов для освещения

Первые источники видимого электромагнитного излучения, которые использовало человечество для своих нужд, были основаны на сжигании горючего топлива растительного (дерево) или животного происхождения (сало и жир).

Древние греки и римляне впервые стали использовать глиняные и бронзовые сосуды, в которые помещали горючие вещества. Эти сосуды стали прародителями современных ламп.

В конце XVIII века швейцарский химик Аргант изобрел лампу с фитилем, в которой в качестве топлива использовался керосин. В конце XIX века Эдисон запатентовал электрическую лампу накаливания. После этого изобретения и благодаря быстрой динамике развития индустрии, начинает появляться множество других электрических источников излучения.

Типовые параметры некоторых источников света

Сила света типовых источников:

Источник Мощность, Вт Примерная сила света, кд Цветовая температура, К КПД, % Наработка на отказ, ч
Свеча 1
Современная (2006 г.) лампа накаливания 100 100 1000
Обычный светодиод 0.015 0.001 100 000
Сверхъяркий светодиод 2,4 12 100 000
Современная (2006 г.) флюоресцентная (люминесцентная) лампа 20 100 15 000
Электродуговая ксеноновая лампа до 100 кВт
Лампа-вспышка до 10 кВт
Электродуговая ртутная лампа до 300 кВт
Ядерный взрыв (20 Кт) 2,1⋅1021
Термоядерный взрыв (50 Мт) 5,3⋅1024
Первый рубиновый лазер 0,1
Категория  тип  Световая отдача(Люмен/Ватт) КПД%
На основе горения Свеча 0.3 0.04 %
газовая горелка 2 0.3 %
Лампа накаливания 5 Вт лампа накаливания (120 В) 5 0.7 %
40 Вт лампа накаливания (120 В) 12.6 1.9 %
100 Вт лампа накаливания (120 В) 16.8 2.5 %
100 Вт лампа накаливания (220 В) 13.8 2.0 %
100 Вт галогенная лампа (220 В) 16.7 2.4 %
2.6 Вт галогенная лампа (5.2 В) 19.2 2.8 %
Кварцевая галогенная лампа (12-24 В) 24 3.5 %
Высокотемпературная лампа 35 5.1 %
Люминесцентная лампа 5-24 Вт компактная флюоресцентная 45-60 6.6-8.8 %
T12 линейная, с магнитным балластом 60 9 %
T8 линейная, с электронным балластом 80-100 12-15 %
T5 линейная 70-100 10-15 %
Светодиод белый светодиод 10 — 97 1.5-13 %
белый OLED 102 [источник не указан 2829 дней] 15 %
Прототип светодиода до 254 до 35 %
Дуговая лампа Ксеноновая дуговая лампа 30-50 4.4-7.3 %
50-55 7.3-8.0 %
Газоразрядная лампа 150 22 %
183 — 200 27-29 %
Металлогалогенная лампа 65-115 9.5-17 %
1400 Вт Серная лампа 100 15 %
Теоретический предел 683.002 100 %

Искусственные приборы видимого электромагнитного излучения

В свою очередь, искусственные источники бывают следующих типов:

  • Лампы накаливания. Они излучают свет благодаря разогреву металлической нити накаливания до температуры нескольких тысяч градусов. Сама нить накаливания находится в герметичном стеклянном сосуде, который заполнен инертным газом, предотвращающим процесс окисления нити.
  • Галогеновые лампы. Представляют собой новую эволюционную ступень ламп накаливания, в которых к инертному газу, в котором находится металлическая нить накаливания, добавляется галогеновый газ, например, йод или бром. Этот газ вступает в химическое равновесие с металлом нити, которым является вольфрам, и позволяет продлить срок службы лампы. Вместо стеклянного корпуса в галогеновых лампах используют кварц, который выдерживает более высокие температуры, чем стекло.
  • Газоразрядные лампы. Этот вид источников света создает видимое электромагнитное излучение за счет электрических разрядов, которые возникают в смеси газов и паров металла.
  • Флуоресцентные лампы. Эти электрические источники света создают излучение за счет флуоресцентного покрытия внутренней стороны корпуса лампы, которое возбуждается за счет ультрафиолетового излучения электрического разряда.
  • Источники LED (от англ. Light Emitting Diode). Этот вид источников света представляет собой диодные источники электромагнитного излучения. Они отличаются простотой устройства и долгим сроком действия. Также их преимуществами перед другими электрическими источниками света является низкая потребляемая мощность и практически полное отсутствие теплового излучения.

КЛАССИФИКАЦИЯ СИСТЕМ ЭЛЕКТРИЧЕСКОГО ОСВЕЩЕНИЯ

Искусственное освещение по выполняемым подразделяется на:

  1. Бытовое — применяется в жилых помещениях;
  2. Рабочее — может быть как общим, так и локализованным — непосредственно на рабочих местах. Как правило, строго нормировано в соответствии с нормативами условий труда;
  3. Дежурное — иногда называют охранным освещением. Используется на коммерческих и производственных объектах в нерабочее время. Предназначено для освещения охраняемых зон;
  4. Аварийное — активируется вместо основных источников электрического освещения в экстремальных ситуациях.

Последнее бывает двух типов:

Эвакуационное.

Обеспечивает минимально необходимую видимость при экстренной эвакуации персонала и посетителей из здания. Источники эвакуационного освещения должны быть обязательно установлены в местах, представляющих опасность при быстром передвижении в условиях ограниченной видимости: узкие проходы, коридоры без окон, лестничные площадки и т.п.

Безопасности.

Используется на промышленных объектах, где существует непрерывный технологический процесс. Освещение безопасности по нормативам имеет автономные источники энергообеспечения и обустраивается в местах, которые могут представлять опасность для персонала. Активируется при полном отключении рабочего освещения.

Кроме того следует отметить:

Сигнальное.

Используется для обозначения помещений с зонами повышенной опасности. На практике представляет собой таблички с подсветкой и символами радиационной или биологической опасности. На производстве также встречаются световые таблички с обозначением лазерной опасности, повышенного электромагнитного поля и т.п..

Бактерицидное.

Разновидность освещения ультрафиолетовым или кварцевым светом, которое используется для обеззараживания помещений. Такие установки являются как стационарными, так и переносными.

Эритемное.

Разновидность освещения в ультрафиолетовом диапазоне со строго определенной длиной волны — 297НМ. Используется в закрытых помещениях и при недостатке дневного освещения. Стимулирует некоторые физиологические процессы в организме.

Лампы ДНаТ

ДНаТ — это дуговая (Д) натриевая (На) трубчатая (Т) лампа. Принцип её работы схож с лампой ДРЛ, но здесь источником света служит газовый разряд в парах натрия. Распознать натриевые лампы можно по ярко-оранжевому свету, который они излучают.

Натриевые лампы обладают высокой светоотдачей по сравнению с другими газоразрядными лампами. Это надежный и проверенный временем источник света, не лишенный, кстати, недостатков.

  • Во-первых, низкий индекс цветопередачи и смещение спектра в сторону красно-оранжевых цветов. Светильники с натриевыми лампами широко применяют в уличном освещении, но при этом редко устанавливают на скоростных автомагистралях: преобладание красного спектра ухудшает видимость и повышает опасность для участников дорожного движения.
  • Во-вторых — высокий коэффициент пульсаций (от 15 до 40 %). И, наконец, длительный старт: время выхода на рабочий режим натриевой лампы может достигать 5–10 минут.

Световой поток натриевых ламп также снижается во время эксплуатации. На светоотдачу влияют и условия работы светильника: при температуре ниже −20 ºС и частых перепадах напряжения происходит ухудшение излучения и теряется его интенсивность.

Типы источников света[править]

По своей природе источники света подразделяются на искусственные и естественные.

Естественные источники светаправить

Основная статья: Естественные источники света

Естественными И. с. являются Солнце, Луна, звёзды, атмосферные электрические разряды и др.

Флюоресцентные газоразрядные лампыправить

Основная статья: Ртутная лампа
Основная статья: Ртутная газоразрядная лампа
Основная статья: Дуговая газоразрядная лампа

Лазерыправить

Лазеры дают когерентные световые пучки высоких интенсивностей, исключительной однородности по частоте и острой направленности.

Некоторые характеристики источников светаправить

Источник света Потребляемая мощность Световой поток
Группа Тип Ватт lm/W (min) lm/W (типовое) lm/W (max)
Пламя Свеча ca. 50 (Wärmeleistung) 0,1
Керосиновая лампа 0,2
Пламя + Ауэровский колпачёк Мощные лампы bis 1000 (тепловая мощность) 5,0
Светодиод Синий 0,05 bis >1 1,0 8,5 16,0
Красный 0,05 bis >1 5,0 47,5 90,0
Белый, Entwicklungsziel der EU 0,05 bis >1 200,0
Светодиод + люминофор Белый (синий + люминофор) 0,05 bis >1 1,0 50,5 150,0
Лампы накаливания лампа накаливания 230V 5 5,0
лампа накаливания 230V 25 9,2
лампа накаливания 230V 40 10,0 10,0 10,3
лампа накаливания 230V 60 11,5 12,0 12,5
лампа накаливания 230V 75 12,4
лампа накаливания 230V 100 13,8 14,5 15,0
галогенная лампа 230V 100 16,7
галогенная лампа 230V 500 19,8
галогенная лампа 230V 1000 24,2
галогенная Niederspannung 50 20
галогенная 12 V (KFZ, real 13,8V) 55 27,0 27,5 28,0
Газоразрядные лампы + Люминофор Компактные люминесцентные лампы 5 45,0
Компактные люминесцентные лампы 23 40 60 80
Компактные люминесцентные лампы 26 70
Компактные люминесцентные лампы 70 75
Leuchtröhre, auch als Kaltkathode oder CCFL bezeichnet 11 50 55 60
Leuchtstofflampe mit konventionellem Vorschaltgerät (KVG, 50-Hz-Drossel) 36 60 75 90
Leuchtstofflampe inkl. konventionellem Vorschaltgerät (KVG, 50-Hz-Drossel) 55 40 50 59
Leuchtstofflampe mit elektronischem Vorschaltgerät (EVG) 36 80 95 110
Leuchtstofflampe inkl. elektronischem Vorschaltgerät (EVG) 50 58 68 79
Induktionslampe(Elektrodenlose Leuchtstoffröhre mit induktiver Speisung) 80
Газоразрядные Ксеноновые газоразрядные лампы высокого давления в видеопроекторах 100-300 10,0 22,5 35,0
Ксеноновые газоразрядные лампы (лампы высокого давления для кинопроекторов) mehrere Kilowatt 47
Металлогалогенные лампы 35 bis >1000 70 94 106
Ртутная лампа высокого давления (HID) 50 55 60
Тлеющий разряд, безлюминесцентные 8
Ксеноновая дуговая лампа 30 50 150
Ртутно-ксеноновые дуговые лампы (автомобильные фары) 35 50-80 52-93 106
Ртутные лампы высокого давления (HQL), некоторые с люминесцентными трубками 50 36
Ртутные лампы высокого давления (HQL), некоторые с люминесцентными трубками 400 60
лампы типа галоген-пары металла (HCI, HQI) 250 93 100 104
Натриевые лампы высокого давления ab 50 150
Натриевые лампы низкого давления ca. 80 150 175 200
Серная лампа 1400 95
Газоразрядные трубки Натриевые лампы высокого давления 35 — 1000 W 120 140 150
теоретический световой поток тепловое излучение, 6600 K 95
белый, 410–705 nm 240
зелёный, 550 nm 683

Примечания

  1. Defined such that the maximum value possible is 100 %.
  2. 1 candela*4π steradians/40 W
  3. . col. 2, line 34.
  4. Keefe, T.J. (2007). Дата обращения 5 ноября 2007.
  5.  (нем.) (PDF) (недоступная ссылка). www.osram.de. Дата обращения 28 января 2008.
  6.  (недоступная ссылка). www.ts-audio.biz. Дата обращения 28 января 2008.
  7. Klipstein, Donald L. (1996). Дата обращения 16 апреля 2006.
  8. . Дата обращения 16 апреля 2006.
  9. Department of the Environment, Water, Heritage and the Arts, Australia.  (недоступная ссылка). Дата обращения 14 августа 2008.
  10. Klipstein, Donald L. . Don Klipstein’s Web Site. Дата обращения 15 января 2008.
  11. .
  12. .
  13.  (англ.). Cree, Inc. Press Release (12 April 2012).
  14. ↑ (pdf) (недоступная ссылка). Optical Building Blocks. Дата обращения 14 октября 2007. Note that the figure of 150 lm/W given for xenon lamps appears to be a typo. The page contains other useful information.
  15. OSRAM Sylvania Lamp and Ballast Catalog (неопр.). — 2007.
  16. ↑ .
  17. .
  18. . Venture Lighting (2007). Дата обращения 10 августа 2008.

Фара

Конструкция фары в целом подобна обычным модулям. Однако чтобы удовлетворить ограничениям в отношении ослепления других участников движения, в данной случае необходимо выдерживать большую точность параметров, что влечет дополнительные издержки производства.

Источником света в газоразрядной лампе является электрическая дуга. Поперечник колбы газоразрядной лампы всего 10 мм. Колба изготовлена из кварцевого стекла, в ней расположены два электрода, промежуток между которыми составляет 4 мм. Расстояние между концом электрода и опорной поверхностью лампы составляет 25 мм, это соответствует размерам стандартной галогенной лампы.

При комнатной температуре лампа содержит смесь ртути, солей различных металлов и ксенона под давлением. Когда лампа включается, ксенон сразу начинает светиться и испаряет ртуть и металлические соли. Высокая световая эффективность возникает за счет смеси паров металлов. Ртуть производит большую часть света, а металлические соли определяют цветовой спектр. На рисунке показан спектр излучения, создаваемого газоразрядной лампой в сравнении со спектром галогенной лампы. В таблице приведены различия между газоразрядной (DI) и галогенной (HI) лампами (цифры приблизительные и даны только для сравнения).

Таблица. Сравнение HI и DI ламп

Тип лампы Видимый свет, % Тепло, % УФ излучение, %
HI 8 92 1
DI 28 58 14

Высокий уровень ультрафиолетового излучения от газоразрядной лампы означает, что по соображениям безопасности требуется использовать специальные фильтры. На рисунке еще раз показана светимость газоразрядной лампы в сравнении с галогенной. Отдача газоразрядной лампы примерно в три раза больше.


Чтобы зажечь газоразрядную лампу необходимо последовательно пройти следующие четыре стадии:

  1. Воспламенение — высокий импульс напряжения создает искру между электродами, что вызывает ионизацию промежутка, — создается трубчатая дорожка разряда.
  2. Мгновенное свечение — ток, текущий по дорожке разряда, возбуждает ксенон, который далее испускает свет в количестве 20% от максимального значения лампы.
  3. Разгон — лампа теперь работает при возрастающей мощности, температура быстро повышается, ртуть и металлические соли испаряются. Давление в лампе увеличивается по мере увеличения светового потока, и происходит смешение спектра от синего цвета к белому.
  4. Непрерывный режим — теперь лампа работает при стабилизированной мощности около 35 Вт. Такой режим гарантирует, что поддерживается горение дуги и световой выходной поток не мерцает. К этому моменту достигается световой поток порядка 28 000 лм и цветовая температура 4500 °К.

Чтобы управлять описанными выше стадиями работы лампы, требуется балластная система. Для создания дуги необходимо высокое напряжение, которое может достигать 20 кВ. В течение разгона балластная система ограничивает ток, а затем ограничивает также и напряжение. Контроль потребляемой мощности позволяет световому потоку расти очень быстро, но предохраняет от превышения заданного уровня, которое уменьшило бы срок службы лампы. Балластная система также включает в себя схемы подавления радиоизлучения и схемы обеспечения безопасности.

Полный модуль фары может быть сконструирован различными способами, поскольку газоразрядная лампа производит в 2,5 раза больший световой поток при температуре, вдвое меньшей, чем у обычных галогенных ламп. Это предоставляет большие возможности в моделировании фары и, следовательно, в дизайне передней части автомобиля.

Если система GDL используется как луч ближнего света, требуются модули фар с автоматическим выравниванием потока света из-за высоких интенсивностей свечения. Однако использование её для дальнего света может создавать проблему вследствие природы процесса включения и выключения лампы. Подходящим решением может быть система GDL с непрерывным лучом ближнего света, снабженная дополнительно обычными фарами дальнего света (система с четырьмя фарами).

Виды искусственного освещения по направлению светового потока.

Освещение общего типа предназначается для того, чтобы было комфортно и светло во всем помещении, оно бывает нескольких типов: прямое (направленное), непрямое, смешанное, рассеянное.

При прямом или направленном освещении источник света направляется на определенную поверхность или объект, благодаря чему они визуально увеличиваются. Такого эффекта можно добиться при помощи настольных ламп, светильников-плафонов, некоторых встроенных или подвесных моделей осветительных приборов.

Непрямое освещение также называют отраженным, так как свет, который излучается располагающимися по периметру помещения софитами, отбивается от стен и потолка, освещая равномерно помещение. Благодаря использованию непрямого освещения, пространство вокруг кажется невесомым, а дом – комфортным.

При рассеянном освещении свет равномерно рассеивается во всем помещении (радиус может быть 360 градусов), проходя через полупрозрачный плафон. Такой эффект можно получить при использовании люстр или подвесных светильников.

Смешанное освещение сочетает в себе все виды перечисленного освещения, но свет при этом распространяется в нескольких направлениях.

Сочетание рассеянного и непрямого освещения.

Функциональное назначение видов искусственного освещения.

Искусственное освещение на производственных объектах используется достаточно широко, оно подразделяется на виды в зависимости от области его назначения. Принято выделять такие виды систем искусственного освещения: рабочие, аварийные и охранные.

Рабочее освещение в здании и на прилегающей территории обеспечивает нормальные условия труда.

Подсветку границ территории охраняемого объекта предполагает охранное освещение.

Аварийное освещение предусматривает при повреждении основного источника питания, подключение системы освещения к генератору или другому альтернативному источнику. Очень важную роль играет данный тип освещения при возникновении чрезвычайных ситуаций, этим типом освещения обязательно должны быть оснащены больницы, вокзалы, школы, промышленные и другие стратегические объекты. Аварийные светильники могут осуществлять работу от центральной аварийной системы или же автономно (от аккумулятора установленного внутри). В жилых домах аварийное освещение устанавливается редко, хотя это могло бы многих проблем помочь избежать. Часто при временных отключениях электроэнергии бывают случаи травматизма на лестничных пролетах.

Указатель аварийного освещения.

Натриевые лампы низкого давления

Исторически первыми из натриевых ламп были созданы НЛНД. В 1930-х гг. этот вид источников света стал широко распространяться в Европе. В СССР велись эксперименты по освоению производства НЛНД, существовали даже модели, выпускавшиеся серийно, однако внедрение их в практику общего освещения прервалось из-за освоения более технологичных ртутных газоразрядных ламп, которые, в свою очередь, стали вытесняться НЛВД. Схожая картина наблюдается в США, где НЛНД в 1960-х гг. были полностью вытеснены металлогалогенными лампами. Однако в Европе НЛНД по сей день распространены достаточно широко. Одним из их применений является освещение загородных автострад.

Лампы низкого давления отличаются рядом особенностей. Во-первых, пары натрия весьма агрессивны по отношению к обычному стеклу. Из-за этого внутренняя колба обычно выполняется из боросиликатного стекла. Во-вторых, эффективность НЛНД сильно зависит от температуры окружающей среды. Для обеспечения приемлемого температурного режима колбы последняя помещается во внешнюю стеклянную колбу, играющую роль «термоса».


С этим читают